CAREER: Performance Verification of Machine Learning Models
Used in Power and Energy System Applications

1. Overview

Machine Learning (ML) is well-positioned to help accelerate the renewable energy transition and
manage the increasing complexity of modern power systems. To ensure network safety, ML models
used in the electric power grid will require rigorous validation prior to deployment, according to federal
reports [1]. However, state-of-the-art ML verification tools are still orders of magnitude behind some of
the largest ML models [2] and power grid application needs [3], and existing verification tools are not
generally applicable to the actual problems that power engineers need solved [4]. To overcome these
hurdles and educate the next generation of ML-aware grid engineers, this CAREER project will design
algorithms and computational tools which rigorously verify the performance of ML models built for use
in electric power grids. Through (i) a fused modeling paradigm which exploits advances in both ML
verification and power system optimization, (ii) creative projections and cuts in the primal and dual
verification search spaces, (iii) continuous feedback and collaboration with industry, and (iv) active
student education via competition and software development, this project will scale up ML verification
state-of-the-art by orders of magnitude while increasing its relevance to actual power industry problems.

1.1 Motivation: Coal, oil and gas met a combined 81% of the global energy demand in 2023 [5]. If
global reliance on carbon-based energy is not drastically curtailed, catastrophic consequences could soon
emerge [6]. Total decarbonization of the electrical power grid, however, will require an unprecedented
deployment of stochastic renewable energy resources [7]. Consequently, the need for fast and secure grid
asset coordination and management will present serious algorithmic challenges for the human operators
who run the grid. With its ability to make fast, accurate and insightful predictions, Machine Learning
(ML) is well-positioned to help overcome these challenges and profoundly disrupt the operation of electric
power systems in the coming decades [1,8,9]. While this disruption can bring about profoundly positive
outcomes for society (e.g., decarbonization), the infusion of ML technologies into the operation of large-
scale power networks can also have devastating consequences if the technology is deployed unchecked
(akin to the FirstEnergy software bug that drove the 2003 blackout [10], causing 100 deaths).

An emerging solution to this problem is known as formal verification. In verification, the properties
of an ML model are rigorously tested to ensure the model behaves as its users expect prior to deploy-
ment [11,12]. Within the context of power systems, formal verification has focused on numerically
proving that an ML model output will always satisfy some minimally acceptable worst-case error bound
or constraint violation metric, as compared to the ground-truth physics [4,13]. There is an emerging
desire from regulators (at the Department of Energy (DOE) [1] and the National Institute of Standards
and Technology (NIST) [14]) to foster trustworthy and verifiable ML in “safety-critical” contexts. Un-
fortunately, verification problems can be very hard to formulate (from a modeling perspective) and even
harder to solve (from a computational one) [15,16]. In light of these challenges, this CAREER proposal
seeks to answer fundamentally important questions emerging in the verification research community:

e Question 1: Can ML models and power grid physics be jointly modeled in a tractable verification
framework which exploits advances from both research communities?

e Question 2: Has the size of verifiable ML models already saturated? Or can creative and learning-
boosted tightening approaches push verification solver scalability to the next orders of magnitude?

e Question 3: Can powerful verification tools provide actionable value to the power system industry?

These questions will be investigated, and answered, primarily through methodological innovations which



allow for the solving of large-scale, power industry-relevant verification problems. Accordingly:

This CAREER project will design algorithmic and computational tools which rigorously
verify the performance of ML models used in electrical power system operation.

These tools will help the power engineering research and regulatory communities better understand
the computational limits of verification, and they will also help exploit key synergies between algorithmic
theory and engineering practice (i.e., by aligning what can be done with what needs to be done). Through
research advancement and educational outreach, this CAREER project will help unlock new frontiers of
research and practice within the growing field of ML model verification for power systems. In synergy
with the proposed research, my education plan aims to unite and inspire the next generation of data-
driven engineers, who will run tomorrow's power grid, through accessible scientific computing libraries,
engaging competitions, and innovative course material.
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pend on the desired applications, but future desired applications also depend on the computational
possibilities (for example, if it was possible to guarantee that a self-driving vehicle would never hit a
pedestrian, then regulators would require all vehicle manufacturers to meet this standard). As depicted
in Fig. 1, my long-term vision is to advance ML model verification state-of-the-art (SoA) by
exploiting the synergistic tensions between theory and practice. In doing so, my research lab at
the University of Vermont (UVM) will unlock new frontiers of both fundamental research and practical
application, driving actual deployment of verification tools in the power grid and beyond. Advances from
my lab will then inform a series of educational and public outreach opportunities, ultimately driving new
research ideas and stronger public+policy support for verification technologies. | plan to have my lab
emerge as a leader within the field of safety-critical model verification, driving advanced research which
pushes US power grids towards a safe and trustworthy embrace of verifiable ML technologies.

Figure 1: CAREER research, education, and impact objectives.

1.3 Why me: ML verification for power systems sits at the nexus of power engineering, mathematical
optimization, and ML. Accordingly, this problem cannot be solved by the ML community alone: it
will require deep power system modeling intuition and knowledge of actual industry needs. Sitting at
the intersection of ML and power system research, | am uniquely well positioned to be successful in
this project. As a Marie Curie postdoctoral fellow at the Technical University of Denmark, | pioneered
the application of Neural Network (NN) verification to operational power system problems, laying an
important foundation of work to build off [4,13,19-21]. Prior to this, | received my PhD from MIT, where
my research focused on data-driven modeling and inverse problem theory applied to operational power
system problems [22-26]. Finally, my successful participation in the latest ARPA-E Grid Optimization
(GO) competition has given me the experience needed to tackle massive-scale network optimization
problems [27]. In this competition, my QuasiGrad solver [27] had the 4'" highest market surplus
function on the largest test case (containing billions of variables), where 8 of the 14 teams could not
even find a feasible solution [28]. This experience has inspired me to run my own verification competition
(“VerifyGridML") as a key pillar of my educational plan. As an assistant professor at the UVM and
a member of the new Center for Energy and Autonomy (CREATE), | have access to world-leading



experts in the fields of power grid engineering, complex systems, and scientific computing. | will also be
able to leverage tight regional connections through the Vermont Clean and Resilient Energy Consortium
(VCREC) [29], a private-public partnership between UVM and a plethora of local power industry players.

2. Background & Research Gap

Due to the size and complexity of both modern power systems and present-day ML models, emerging
verification challenges are inherently computational in nature. Accordingly, the verification community
has recently pivoted from formal logic and brute-force SAT-solver approaches and instead embraced tra-
ditional optimization-based methods (utilizing, e.g., duality, branch-and-cut, semidefinite programming,
etc.) [12]. To optimize power system operation and perform network security assessment, grid operators
have been using similar optimization tools for decades [30, 31]. The organic connection between the
secure and optimal operation of power systems, and the scalable verification approaches emerging from
the ML community, has been recently observed [4,12,13,32] but remains under-explored. This CAREER
project will exploit the growing connection between these fields and the emerging needs of industry.

2.1 Operational and Computational Power Systems Challenges: Electric power grids are under-
going a rapid transition [33]. Pressing challenges associated with (i) climate change, (ii) affordability,
(7i7) distributed energy resource (DER) proliferation, and (iv) grid feedback-loop acceleration are driving
unprecedented changes in power systems across many timescales [33, 34]. Due to its capacity to learn
in complex environments and provide fast predictive solutions, ML (and Artificial Intelligence (Al) in
general) is well-posed to help transform power systems in coming decades [35]. Fig. 2 illustrates several
emerging uses of learning within an ML-aided power system [35-39], including, for example, Optimal
Power Flow (OPF) [40,41] and security assessment [42] prediction. Infusing ML into grid operation has
many potential benefits, but it also greatly increases the complexity of the entire system.
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Figure 2: Emerging uses of ML (red). with the mathematical programming community.

From pushing Mixed Integer solver commercial-

ization (saving billions [44]), to the development of sparse nonlinear network solvers (e.g., KNitro's
IPSO tool [45]), power system optimization has a history of pushing SoA forward. Researchers have
also developed a suite of fundamental research innovations specifically targeted at globally solving and
bounding large-scale power network optimization problems [46], including tight semidefinite program-
ming (SDP) relaxations of OPF [47], Quadratic Convex (QC) relaxations with bound tightening [48,49],
and many others [50-55]. As demonstrated by ARPA-E's GO competitions [56], however, the problem
of power system optimization is still largely unsolved: reliably finding near-globally optimal and “secure”
dispatch solutions on large systems has not yet been achieved (see individual test case results [28] from
third GO competition [57]). Given this existing level of computational intractability, verifying the impact
of ML-based controllers infused into power system operational loops, as in Fig. 2, may become more
challenging still (even if the model's goal was to decrease computational burden of system operation).
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2.2 Optimization-Based Formal Verification of ML Models: While ML has already enjoyed success-
ful disruption of low-safety-risk industries (e.g., social media), its application in safety-critical systems
(e.g., electrical power grids, and other industries where human safety is at stake [58,59]) has been
rightly constrained due to its inherent black-box nature [60]. To overcome these risks, a burgeoning
body of research has focused on advancing ML trustworthiness through formal verification and adver-



sarial robustness [11,12,15]. Results from such tests present the strongest possible claims that can be
made about an ML model, definitively answering useful (engineering) questions like, “Does an ML-based
controller ever violate known operational limits?”, or “Can an ML-based classification (e.g., threat level)
change if a situation is perturbed slightly?”

The international Verification of Neural Networks Competition (VNN-Comp)[12,61] has synergisti-
cally inspired a number of breathtakingly successful verification algorithms, e.g., o, -CROWN [11, 62],
Multi-Neuron Guided Branch-and-Bound [63], DeepPoly [64], etc. The winningest methods serve as
the bellwether for SoA within the NN verification community. In the literature, verification prob-
lems are posed as the minimization of some metric m(-) wrapped around a NN model NN(-) [11, 16].

v =min f(z), f(z) 2 m(NN(z)). (1) As de.picted in Fig.. 3, ifvyis prO\{ed to. l.ae everywhere non-
zeC negative, the associated problem is verified (e.g., the ML is
proven to never violate some desirable property). However, if an adversarial counter example is found,
then the model fails the verification test. Varying verification methodologies have utilized, e.g., activation
function convex relaxations (SDP, Lagrangian, etc.), mixed-integer reformulations, and norm-bounding
propagation [15,65-69]. The winningest algorithms in VNN-COMP, however, have embraced specialized,
Graphics Processing Unit (GPU)-accelerated dual-based branch-and-bound formulations [12,61]. While
these methods have scaled to NNs with hundreds of millions of parameters, they are not yet applicable
to Large Language Model (LLM) sized-systems [2]. More fundamentally, however, existing verification
methodologies are not well suited for solving power system verification problems since physics-based
network constraints are not enforceable, network switching cannot be modeled, and existing verifiers
have not exploited the many advances made by the power flow optimization community [46].

While emerging verification algorithms have been successful
within the domain of ML itself (and have even spun off success-
ful “Al Audit” companies [70]), integration of this work into the
verification of realistically sized cyber-physical systems remains °-
nascent [4,12]. In power systems, NN verification was first con- o -
sidered in [71,72], where the NNs trained on power system data Figure 3: Verified (a) vs falsified (b).
were reformulated as Mixed Integer Linear Programs (MILPs), via [69], and then compared to the
ground truth model, via optimization, to assess constraint violations. These methods were extended
to the ACOPF problem in [73], where small verification problems on a 39-bus grid could take up to
5 hours to solve. Recent approaches have thus targeted scalability explicitly. My work has used tar-
geted SDP-based tightening cuts of relaxed NN power flow models [13] and has exploited GPU-based
verification routines (i.e., a, S~-CROWN [11]) to verify over a massive number of network constraints
simultaneously [4]. Others have used GPU-based verifiers to tighten big-M bounds for a CPU-based
solver (Gurobi) [74] and exploited scalable optimality verification [32] via projected gradient attack.
Despite these efforts, the literature still has not scaled beyond ~1,000 buses, and to my knowledge, no
verification approach has actually been used by the power system industry yet. This project will pioneer
scalable grid-aware verification tools which target direct industry engagement and uptake.

2.3 Emerging Policy Directives Related to ML Verification: Governmental organizations and
standard setting bodies are beginning to scrutinize the safety of ML and Al-based systems [75]. The
Biden Administration recently announced its Executive Order (EO) on Trustworthy Al, which seeks
to “establish a plan for global engagement on promoting and developing Al standards”, specifically
targeting “trustworthiness, verification, and assurance of Al systems” [18]. The EU, through its new
Al Act [76], aims to safeguard consumers and boost Al trustworthiness via a wide variety of standards.
The DOE, with its recent “Al for Energy Report” [1], is embracing similar priorities, aiming to ensure
that ML modes behave “reliably and safely when applied to power grid operations.”

Just because governments are waking up to the potential dangers of Al does not mean the existing



technologies are capable of properly safeguarding society. In response to the EO, the National Institute
of Standards and Technologies (NIST) has recently kicked off its Al Testing, Evaluation, Validation
and Verification (TEVV) program [14], which will help create “guidelines and benchmarks” for Al
systems, especially in safety-critical settings where there is potential for “harm” (i.e., to humans or
infrastructure) [18,77]. This has also led to the formation of the Artificial Intelligence Safety Institute
Consortium (AISIC) [77], an assembly of industry and research groups want to see Al standards emerge
which are both effective and reasonable. The recent EO, for example, indicates that Al may need to meet
certification criteria before it can be applied in certain safety-critical applications. While this sounds
prudent, formally verifying the performance of ML models embedded within large, multiscale
power systems is computationally impossible, given current SoA. This CAREER project seeks to
design tools capable of solving the complex verification problems envisaged by regulators.

2.4 Summarized Research Gap: As demonstrated in the previous three subsections, (i) power
system operational and computational challenges are increasing rapidly, and ML infusion will make this
complexity increase even more-so, exposing new vulnerabilities; (i¢) ML verification methodologies are
also maturing rapidly, but they do not yet suit the needs of large-scale power system verification; and (i:7)
governmental regulators are beginning to strongly push for trustworthy Al standards and regulations,
especially within the context of safety-critical applications. Taken together, there clearly exists a need
for new, rigorous, use-inspired verification tools which scale to the size of the oncoming challenge.

3. Research Plan

Through this research plan, | seek to develop a computationally tractable verification frame-
work which will be able to verify if an electrical power system, infused with various levels of
ML-based control, can satisfy key security, stability, and operational metrics. While ML may be
used in many facets of emerging power systems, this research plan will focus on steady state operational
uses; this includes problems related to state estimation, OPF, voltage stability, congestion management,
adversarial threat detection, contingency screening, and so on. The algorithmic innovations advanced
in this project, however, will be generally applicable to a much wider class of NN verification problems.

The performance verification problem targeted in this CAREER

prove: (a) safety metric proposal is a problem of proving some (a) safety metric, subject to
st: (b) neural network both (b) NN mapping and (c) power grid physics constraints, as
(c) power grid physics stated in Fig. 4. As a concrete example, ISO New England, Amazon,

Figure 4: Verification problem. and Arizona State researchers have recently developed an ML-based
voltage control agent which makes transformer tap and switched

shunt control decisions [78]. Before deployment, a pressingly relevant verification problem follows:
can the ML agent ever cause a severe network voltage violation? Mathematically, this would be posed
by finding, via optimization, the bounded loading condition which yields the worst network voltage vio-
lation, subject to NN voltage control decisions G, B = NN (v, p, g) and AC power flow constraints.

In the verification literature, the problem posed in Fig. 4 turn into problems of proving lower perfor-
mance bounds [11,16]. The formulation illustrated in Fig. 3, for example, does not need to be solved
to global optimality to be conclusive. It needs to, either, prove (e.g., via convex relaxation) that v > 0,
meaning safety is guaranteed, or find a counter example (adversarial input) which disproves the safety
metric. To prove lower bounds, this project will exploit optimally tight convex relaxations of (1) via
creative projections in the dual variable space, and lifted cuts in the primal space. To apply these
advances, | will pioneer a novel power system + NN verification framework, enabling the “sound” (i.e.,
correct) and “complete” (i.e., conclusive) [16] verification of large-scale, industry relevant problems.

As illustrated in Fig. 5, the research plan itself is divided into three major objectives. Objective 1
will focus on fusing power system modeling and ML verification into a single coherent framework. Ob-
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Figure 5: lllustration of key research objectives, all wrapped inside of GridVerification. j1.

jective 2 will focus on the algorithmic advances needed to scale power system and ML model verification
capabilities to the next orders of magnitude. Finally, Objective 3 will focus on key applications and
use cases, related especially to grid code compliance verification and improved power system optimiza-
tion. As depicted, these advances will be actively integrated into an accessible software toolbox called
GridVerification. j1 which will be used in my SafeML class to educate students. The verification ad-
vances themselves will be rolled into a single, coherent overarching framework called Catamount, which
will act as the algorithmic heart of the GridVerification.jl toolbox. As a competitive researcher
and as a curious scholar, extreme-scale verification of power grid models is a challenge which resonates
deeply with my passion. | will use this passion to inspire the graduate and undergraduate researchers who
| recruit to help drive these advances forward, and in my collaboration with the optimization industry
to advance these methods (see letter of collaboration from Hassan Hijazi at Gurobi).

Objective 1: Fusing Power System Optimization and Neural Network Verification.

Modern verification solvers have become increasingly powerful [12], but the generality of the types of
problems they are able to solve is highly limited. In other words, ML verification tools are good at solving
problems emerging from within the ML community, but their direct application to, e.g., the engineering
domain remains limited [74,79,80]. Thus, modern verifiers cannot solve the full set of problems which
power system engineers need solved. More fundamentally, since electric power systems have not been
the target application for verification solvers, the verification community has not exploited the large set
of innovations pioneered by the power flow research community. This objective, therefore, asks:

[ Can ML and power grids be jointly modeled in a tractable verification framework? ]

To answer this question, this objective introduces a verification modeling paradigm which will suit the
needs of the power system engineering community (Obj 1.1), and it will directly exploit the many global
optimization advances made by the power system community in recent years (Obj 1.2).

Objective 1.1: Capturing General Power System Models and Constraints in Verification. Many
key problems from power systems cannot be directly solved by top-performing [11, 63] verifiers (i.e.,
ones in VNN-COMP [61]). For example, the following three verification problems cannot be solved:

(a) hard constraints: (b) switching behaviour: (c) bilevel program:
min f(z) min f(z,b) min’ f(z,y) (2)
s.t. hyi(x) = ha(x), etc. s.t. be {0,1} s.t. y = min ¢(x), ete.

Problem (a) enables the verification of NN-based dispatch and control laws within the context of enforced
power flow physics; problem (b) is crucial for power system models constraining switchable transmission
lines or generators [81]; and problem (c) enables the computation of optimality gaps associated with
NN optimization surrogates [32]. Recent work (via INVPROP [82]) has reverse propagated bounds
associated with NN output constraints back to the input. Other work has included AC power flow
mappings as an additional set of NN layers [4, 12, 83], thus enabling direct verification. These efforts
represent special edge case formulations, however, and do not enable general solutions for (2).



min  f(zn) (3a In this objective, | will design a tractable and flexible framework
zoEX for solving these problems. In particular, | will build off my approach

s.t. h(zn) =0 (3b) in [4], which proposed, at its core, “dualizing” various constraints (see

= NN(z9). (3¢) problem (a)) into a set of generalized NN layers. Consider, for ex-
ample, the minimization of f(z) subject to an equality constraint h(xz,) = 0, followed by a se-
ries of sequential NN layer mappings. Without (3b), (3) could be solved using standard veri-
fication solver methods [11] due to its sequential structure. To deal with the given constraint,
the associated Lagrangian, L(z,,A) = f(x,) + A'h(z,), can be treated as an augmented NN
output layer, mapping some primal variables through a generalized layer g(-) = f(-) + ATh(").

The updated problem in (4) can now be solved using stan-
dard bound propagation and dual norm advances [11], which |  max min (zn) + )\Th(acn) (4a)
will exploit. To successfully apply this approach, however, non- A zoed
convex constraints (e.g., power flow constraints) will be tightly s:t. @ = NN(zo). (4b)
bounded using optimally tight projections (see next Obj 2.1), and convex and conic constraints will
be dealt with via dual cone projections (see next Obj 1.2). Discrete constraints (see problem (b)) will
be continuously relaxed and successively branched on, and | will explore the application of tightening
Gomory cuts. Bilevel optimization constraints (see problem (c)) will be dealt with in principally the
same manner. The lower level of a bilevel problem can be recast as a set of algebraic constraints using
KKT conditions [84], where the associated dual variables become part of the primal variable set. These
new KKT constraints can be dealt with in the same way that | dealt with h(x,) = 0: introduce new
dual variables (1., Ax), and dualize the KKT constraints.

The approach used to deal with these three challenging problems (reformulate, dualize, etc.) can
be generalized to a very wide class of formulations, allowing me to tackle a diverse variety of power grid
verification problems. Most importantly, however, this approach allows me to directly build off highly
successful verification methods pioneered by the ML community in recent years [61] (Obj 2.1), and the
power flow tightening tools that have been developed by power system researchers (Obj 1.2) [46].

Objective 1.2: GPU-Friendly Tightening of Advanced Power Flow Relaxations. The power flow
optimization community has seen a number of fantastic advances in recent years, especially within the
realm of globally tightening nonconvex OPF-type problems [47-49,51-55]. While these methods can
suffer serious challenges related to primal feasibility [47], they are a perfect match for the verification
domain, since proving lower bounds is the primary endeavor of verification. Existing methods, however,
are typically deigned to run on CPUs (via, e.g., interior point or barrier-based methods [85].)
Accordingly, this objective will leverage the dualized modeling framework from Obj 1.1 to exploit
highly targeted global optimization methods on the power flow side. The resulting formulations will be
runnable on GPUs, and they will not replace bound propagation-based methods [11, 86] for optimizing
over the NN itself (see Obj 2.1). Instead, these methods will help tighten the power flow formulation [13],
which will show up as an essential portion of many verification problems (i.e., the power grid physics
constraint in Fig. 4). Since verification claims require global optimality, | will start by performing convex
relaxation of embedded AC power flow equations, followed by a chordal decomposition of the power
network [51,52]. | will apply highly selective second-order-cone (SOC), semidefinite programming (SDP),
and polynomial cuts [50]; due to the computational expense associated with SDP constraints, efficient
“determinant cuts” [54] will be used for further relaxation. In each case, resulting convex constraints
“r € K" (where K is a convex cone) will be dualized, such that the associated dual variables become
projected into the dual cone K* [84,87] and the inner primal incurs a “linear” penalty (—z''s):

orignal primal: min f(z) < dualized primal: max min f(z) —zts. (5)
T seK* T

st. xe K



Critically, the linear penalty term is fully consistent with backward
bound propagation [11], which Objective 2.1 will utilize. | have "
recently deployed the dual cone projection in (5) to solve large- |
scale DC-OPF problems with quadratic cost functions [38], and
the method exhibits rapid convergence (see Fig. 6). As the dual-
ized verification problem (5) tends towards convergence (i.e., as the
gradient-based iterations begin converging towards some unknown
upper bound), power flow tightness will be assessed. For non-tight
power flow expressions, my previous work on sequentially targeted
tightening (STT) [13] will be leveraged to tighten the formulation. In this work, SDP-based RLT cuts
were iteratively added to a NN power flow verification problem, sequentially tightening the formulation.
After several rounds of tightening, STT could provide a tighter error bound (blue curve in Fig. 7) than
Gurobi's nonconvex Mixed Integer Quadratic Program (MIQP) solver (red curve). To further tighten
the power flow problem, this objective will explore the use of sequentially lifted variables (selected
from Lasserre hierarchies) [89]. This will occur by identifying looseness within in the formulation and
dynamically adding new lifted variables (e.g., z = V1V2V3), which can yield tightening cuts.

GPU Implementation: As with other highly suc-
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Figure 7: Performance guarantees by Gurobi an iterative, gradient-based routine, where parallelized
(red) vs my STT alg. (blue) [13]. gradient computation occurs on powerful GPUs. At each
gradient step, | will enforce dual feasibility 7 € T via projection methods (Objective 2.1), thus ensuring
a valid lower bound. Ultimately, this framework will allow me to exploit any SDP/polynomial /SOC
tightening innovation from the power flow community for the updated purpose of verification.

e Objective 1: Expected Outcomes and Challenge Mitigation. This framework should be flexi-
ble enough to verify over a broad class of industry-relevant grid verification problems (e.g., verification of
NN-based ACOPF [40,41,90]), and it will be shared widely with the power research community, via e.g.,
the Federal Energy Regulatory Commission’s Software Workshop. | will also teach this framework in my
SafeML class, showing students how to verify network constrained problems. If power flow formulations
become overly intractable, | will explore decomposition via Bender's [91] and ADMM [92] approaches. If
pure gradient-based routines are converging slowly, | will explore other GPU-amenable approaches, like
quasi-Newton (LBFGS) or iterative conjugate gradient [93], which | have used previously [27,94, 95].

Objective 2: Scalable Verification via Creative Tightening, Learning, and Exploring.

While verification capabilities have scaled rapidly in recent years [61], they are still unable to verify
over the largest of NN models [2]. Modern security constrained OPF problems, meanwhile, may contain
billions of variables, as with ARPA-E’s recent GO competition [3]. Using Obj 1's framework, Obj 2 will
focus on the (b) neural network constraint of Fig. 4. Here, | will develop fundamental innovations
which enable next generation verifiers to scale by orders of magnitude, answering the following question:

Has the size of verifiable ML models saturated? Or can creative and learning-boosted
tightening approaches push verification solvers to the next orders of magnitude?

At its core, efficient verification depends on fast methods for proving or disproving lower bounds. To
this end, Objective 2.1 will focus on new verification methodologies which optimally tighten various
nonlinear activation function transformations (for bound proving), and Objective 2.2 will design tree-



search methods for identifying adversarial inputs which violate a safety metric (for bound disproving).
Finally, due to the emerging complexity of the task, Objective 2.3 will pioneer new, self-supervised
learning-based algorithms to accelerate the verification process. All innovations will be fused into a
self-consistent algorithmic structure called Catamount; this fusion is depicted in Fig. 8. Catamount
will be a general purpose, “sound and complete” [16], GPU-based verifier, and it will Branch & Bound
(B&B) over nonlinear activation functions in search of the lower true bound.

Objective 2.1: Optimal Tightening of Non-Convex

Activation Functions. Despite verification advances, |3ectye22 Caiamount@ Lo e

relatively simple methods (e.g., static linear cuts) are | S2reSearch o” Jo, *Huiar D g
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still being used to bound the behavior of nonlinear, |stemiasing
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ploy creative dual variable projections to exploit the Obiective 2.1:
tightest possible convex relaxations of nonlinear acti- convex Optinsi[is iy svionilioptening
vation functions. Building off of the approach proposed Figure 8: Objective 2 innovations.

in [11,86], | will parameterize nonlinear, convexified spaces using some set of tunable parameters 7:

Max-Min Verification problem: max min f(x,7), (6)
TITST T
where maximizing over T gives the tightest lower bound. 125 -
For example, the ubiquitous sigmoid activation function Loo | [ G8estconvex etatin

y=o(x)=1/(1+e*) can be upper (or lower) bounded
by the linear function y = ax 4+ 8. To ensure that this
linear function acts as a true bound, we may analytically
solve the pair of equations o(x) = ax + [ (for intercep-
tion) and o(z) = « for slope. In doing so, we get a
fascinating, unique relationship between « and 3 (deriva- =" s oo 25 5o
tion not shown, nor yet published): : L, e :

1 1 Figure 9: Tight sigmoid relaxation.

- — avcosh™! (204 - 1> . (7

- 1 +6—cosh71(%—1)

ouput (Y)
°
3

In (7), we have a direct relationship between slope a and intercept 3, yielding the green cuts in
Fig 9, which smoothly “rotate” around sigmoid’s upper epigraph. The dual problem can maximize over
a, 3, subject to projections of (7), to yield the tightest bound on the sigmoid function in the dual
space. Enforcing (7) via projection ensures that ax + (3 acts as a true upper (or when modified, lower)
bound on the sigmoid activation function. Interestingly, capturing this tightest convex relaxation of
the sigmoid (shaded orange region) using conventional optimization solvers cannot be done without,
either, the introduction of integer variables, or approximate surrogate modeling of the sigmoid function.
Projected gradient methods, however, are highly flexible and can enable optimal tightening of nonconvex
spaces. This creative tightening approach can be generalized to many other nonlinear activation function
relaxations. For example, the softmax operator is a key building block of modern transformers (i.e.,
attention mechanisms) [97] and can be written as z = o(z); = €%/ e". Meanwhile, the bilinear
product, which is crucially important within power flow modeling, is given as z = x;x;. Both of these
multi-variate functions will be bounded using generalized, tunable hyperplanes given by

2y = Q1x1 + aoTo + -+ apzy + 8, {a1,q9,...,an, 8} €F, (8)

where F represents the feasible set of hyperplane parameters, depending on the nonlinear function in
consideration. In some cases, the structure of the set F will enable explicit projection of «, 3 into
the feasible bounding space (e.g., with the sigmoid (7)). Other cases will require implicit projection.



For example, an explicit solution for the rotatable hyperplane which bounds the softmax function in

Fig. 10 is not yet generally known [98]. In these cases, | will use a regularized Newton solve, followed by

clipping-based feasibility restoration [99], to approximate an explicit projection. Fig. 10 illustrates my

rotatable (green) hyperplanes applied to bilinear and softmax functions, which | am proposing for the

first time. Crucially, as long hyperplane angles stays within some precomputed bounds, the hyperplane

will be a valid over/under-approximator, meaning no part of the nonconvex verification space is lost.
Branch and Bound (B&B): As famously shown by

Salman et al., [100], verification relaxation faces a ‘“con- Bilinear Product Softmax Function

vex relaxation barrier”, where relaxed solutions are typically g g,

not strong enough to prove a desired lower bound. To over- i e

come this, | will employ spatial B&B with dual bounding of 2%*

convex subdomains. This search will solve nonlinear convex

Lagrange dual problems via specialized gradient ascent, run o

in parallel on GPUs. Similar in spirit to recent CROWN work y 2005

which B&Bs over nonlinear activations with static cuts [96],

my work will be the first to solve truly nonlinear, optimally Figure 10: Bilinear/softmax bounds.

tightened sub-problems in the B&B search tree, massively propelling verification scalability.

rotating,

Objective 2.2: Stochastically-Biased Tree Search for Adversarial Threat Detection. Broadly
speaking, Obj 2.1 focuses on raising the lower bound, from below, on verifiable performance, iteratively
proving that a relaxed system will never violate a metric. Inspired by recent adversarial attack meth-
ods [32,101], this objective will approach the problem from the opposite end: by finding successively
deeper adversarial inputs which systematically approach the true lower bound from above. To execute
this attack, a stochastically-biased Monte Carlo Tree Search (MCTS) [102] algorithm will be designed.
On its own, MCTS has enabled some of the most widely notarized ML success stories, from drug
discovery to chess/Go victories [103]. At its core, MCTS exploits stochastic sampling of a tree-structured
search space, and it takes actions based on the most likely outcome after a series of “playouts”. This
thrust will fuse the stochastic MCTS method with gradient+bound propagation-based search routines
(i.e., search routines which use local information, derived from Obj 2.1, to guide the “optimal” selection
of adversarial inputs). Gradient information will bias the MCTS sampling routines toward regions of the
search tree which show greatest promise. Enabling this fusion of (a) randomized search with (b) gradient
based guiding will help Catamount find dangerous threats, or build confidence in their nonexistence.

Objective 2.3: Learning-Boosted Verification via Self-Supervised Decision Making. Gurobi
provides the fastest optimizers in the world, but their documentation admits that successful optimization
is “more of an art than a science” [104]; many advances are due to better heuristics, learned via trial and
error. Recent work has thus used ML to select better cutting planes for MILP optimization [105], and
fused traditional cutting planes (RLT, Gomory, Clique cuts, etc.) with GPU-based verification [74,106].

Effective verification of ML-infused power systems will require much more than just linear cutting
plane selection — it will require a symphony of choices related to variable lifting, targeted bound tight-
ening, determinant cut selection, and branching decisions. Each time a verification problem is solved, or
even iterated on, something can be learned. This objective will employ self-supervised learning agents
to (i) observe mathematical programming decisions (in the way that Gurobi human engineers do), (i)
learn from the successes and failures of different approaches, and then (iii) help drive the decision mak-
ing process. This approach mimics how a human might build better intuition from on-the-job training,
rather than studying from a pre-collected supervised dataset. The potential benefits of this approach
are bolstered by inherent risk neutrality: while an agent may make good decisions or bad decisions,
the automated selection process will be engineered such that there are no wrong decisions (e.g., only
give the learning agent a set of valid cuts to choose from). This objective, therefore, will “fight fire



with fire" by infusing ML deep within the verification problem itself. The agents trained to solve this
problem will jointly benefit from the latest in power system-based self-supervised learning [107, 108],
and they will use optimization heuristics (e.g., “smart branching”, “strong branching” [109], etc.) as a
prior foundation, biasing decisions toward known rules until self-supervision suggests otherwise.

e Objective 2: Expected Outcomes and Challenge Mitigation. Catamount should be able to
verify over NNs with 10s of billions of parameters (i.e., an order of magnitude+ larger than the largest
VNN-COMP test cases) and 10s of billions of power grid variables (on par with the largest GO test
cases [3]), assuming ~100GB of GPU memory. If this scalability cannot be achieved, | will exploit
observations from my previous work, which showed that small changes in the verification problem can
lead to much faster run times [13]. Thus, when a hard problem cannot be solved, | will use dual-based
regularization to help accelerate convergence, homotopically “searching” for easier problem versions.

Objective 3: Grid Code Compliance Verification and Improved Optimization Routines.

This third objective will apply Catamount’s advanced bound-proving capabilities in a plethora of
useful contexts, including for the explicit purpose of dis/proving “grid code” compliance of ML models
(Obj 3.1), and for the more general purpose of enhancing conventional power system optimization
problems via rapid, scalable bound tightening (Obj 3.2). This objective will target the question:

Can powerful verification tools provide actionable value to the power systems industry?

Objective 3.1: Grid Code Compliance Verification. Domestic power grids are governed by a plethora
of mandated grid codes and standards, developed, by the North American Electric Reliability Corporation
(NERC), the IEEE, and other regulators. For example,

e NERC's FAC-011 [110] establishes the need for voltage stability System Operating Limits;
e PRC-006 [111,112] ensures Under Frequency Load Shedding, to prevent frequency collapse;
e |EEE 1547-2018 [113,114]) standardizes DER+grid interaction via, e.g, droop voltage control.

These grid codes keep the grid safe, but they also represent some of the barriers which keep ML out
of the control room. Verifying that an ML-based model does not somehow violate these codes is a
nontrivial task, both from a computational perspective, and from a modeling one (e.g., how does one
“prove” compliance?). This objective will engage with industry to identify and solve pressing ML-related
grid code compliance challenges, thus ensuring that ML models adhere to relevant grid codes.

Power Industry Engagement: | will actively seek feedback from utility and system operator partners
(see letters of collaboration from Frankie Zhang of ISO New England, Dan Kopin of the Vermont trans-
mission operator (VELCO), and Cyril Brunner of the Vermont Electric Co-Op (VEC)). Each semester,
| will invite representatives from these groups to a meeting, where | will demonstrate the verification
progress that my lab has made. | will then ask them to answer key questions, like “What are your press-
ing concerns regarding ML model integrity?" and, “What sort of verification technologies would be most
useful for you?" Answers to these questions will help drive applications for GridVerification. jl1, but
they will also help drive its core algorithmic advances, too. For example: “ensure that an ML-based
Decision Support System [115] suggestion will never violate a transmission line limit constraint.”

To pose and solve grid code compliance problems, my approach will leverage Catamount’s enhanced
proclivity for bound proving. Minimum viable targets (i.e., constraint margins) will be mathematically
codified and added to a “library” of compliance targets, allowing other users of the tool to test similar
compliance problems. Once mathematically codified (via, e.g., conditional value at risk, or standard vi-
olation functions), GridVerification. j1 will use its parallelized verification capabilities to prove that
relevant compliance metrics can be mathematically satisfied. Applications related to critical contin-
gency selection (i.e., finding worst-case operating conditions), threat detection (i.e., determining system
weaknesses), and cyberattacks (i.e., finding potential min-max attack vectors) will also be explored.



Objective 3.2: Improved Grid Optimization via Parallelized Bound Tightening. Pre-tightening
variable bounds has a number of key uses in power system optimization [116]. This includes McCormick
envelope relaxation tightening for globally optimal ACOPF [117] and state estimation [118]; or big-
M coefficient tightening for e.g., transmission switching [119] or network reduction [120, 121]. Pre-
tightening, however, is computationally expensive and can require massive parallelization for concurrent
tightening; such parallelization is generally not available on CPUs. Recent work has thus explored using
verification solvers for rapidly approximating variable bounds in hard optimization problems [74,122].

This objective will focus on leveraging GridVerification. j1's inherent parallelization capabilities,
along with its flexible modeling architecture, to enable rapid bound tightening of large-scale power-system
optimization problems (verification related, or not). Functionally, | will treat a power grid model like a
NN mapping, where currents and powers flow through a power network, based on voltage differentials,
akin to how information flows through a NN based on activation function status. | will then define a
generalized optimization modeling framework which can, in parallel, solve for upper and lower variable
bounds associated with pre-selected tightening variables v; via, e.g., max v;, subject to h(z) = 0 and
g(z) < 0. Given problem size, GPU memory availability, and time budget (e.g., 5 minutes), this bound
tightening regime will dynamically manage the amount of time spent on each problem, branching and
bounding on variables and function spaces as time permits. Bound tightening solutions need not be
optimal, only valid. Accordingly, | will explore the fundamental trade-offs between “loosely tightening” all
variables, versus “tightly tightening” a select few key variables. | will also test GridVerification. jl's
ability to bound sub-problems within a B&B search tree (e.g., each subproblem of DC Unit Commitment
is just a DCOPF problem). My work (see Fig. 6, [88]) has successfully explored bounding large-scale
DCOPF objectives, solved on GPUs, using explicit verification approaches.

Gurobi Collaboration: Gurobi is designing solutions for embedding ML models inside of otherwise
conventional optimization problems (see “Gurobi Machine Learning” [123]). However, these problems
can be very hard to solve, requiring hours to optimize over NNs with only 3,000 nonlinear activation
functions [124]. | will work with Gurobi engineers to explore importing verification problems into the
Gurobi ML package, and | will collaboratively test how their CPU-based solve routines, mixed with
my parallelized GPU-based formulations, can accelerate the solve times of their hardest NN-embedded
optimization problems (see letter of collaboration from Hassan Hijazi, who is a senior R&D scientist at
Gurobi and a world-leading expert in security constrained OPF [48,50,125,126] and verification [12,122]).

e Objective 3: Expected Outcomes and Challenge Mitigation. | expect for users outside the
verification community to adopt and use the variable bounding tool. Students in my SafeML class
will use these bounding tools to quickly tighten convexified model formulations, and to test for grid
code compliance. | also expect for GridVerification.jl to be used to solve actual industry-inspired
problems within 1 year after its release. If industry groups are not able to articulate their grid code
compliance needs, | will work with National Lab collaborators at Los Alamos National Lab (LANL) and
Pacific Northwest National Lab (PNNL) to create a “verification manifesto” to share with industry.

4. Educational and Outreach Plan 1. Advanced Open Software:
GridVerification.jl ()
Safety verification of ML models in power systems is a fairly new competition
H . industry egglvrgl?r
research area. Therefore, my education and outreach plan will expose relevant
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els.jl family [127-129]) and test case libraries [130,131]. The fusion of advanced modeling libraries with
realistically-sized grid models has enabled groups from outside of power, like DeepMind, to impact the
field [41], and they have allowed curious students to have sophisticated modeling tools at their fingertips.

Given the popularity and usefulness of emerging generic NN verification libraries (e.g., o, S-CROWN
[132], Auto LiRPA [133]), this pillar will focus on fusing my research advances into an accessible, open
source, Julia-based [134] “package” for verifying NN models used in power systems (extendable to
Python via JuliaPy [135]). The resulting package, called GridVerification. j1, will exploit powerful
GPU APIs (e.g., CUDA. jlI, Metal.jl [136]), and it will fuse seamlessly with, and will be built around,
the PowerModels.jl packages. This will allow GridVerification. jl to directly exploit the many ad-
vanced parsing, modeling, and optimization tools already built into the mature ecosystem of PowerMod-
els.jl. Dr. Carleton Coffrin, chief architect of PowerModels.jl, will support me in my effort to integrate
GridVerification.jl (see letter of collaboration from Carleton). GridVerification.jl will be
perpetually advertised on email list-serves (e.g., PowerGlobe) and social media venues to attract users
and developers from highly diverse backgrounds.

GridVerification.jl be continuously developed as a package which actively reflects the SoA
within my research group, but it will be built with accessibility in mind (existing verification toolboxes
are highly specialized, requiring advanced knowledge of tool functionality and specialized operating
systems, which can be overly cumbersome for power engineers). GridVerification.jl will be built
with a number of challenging, industry-relevant test case examples, allowing users to practice with the
software package. Tutorials will show beginners how the tool can be used, and | plan to build several
“games” into these tutorials, which challenge users to swiftly and accurately verify network models or
find adversarial inputs. This package will be integrated into my SafeML class (Pillar 3) for verifying
over advanced ML models, and it will also enable students to have direct research involvement (e.g., by
helping build and maintain the package) and SoA software experience. Specifically, students will learn
skills like GPU programming and optimized pre-allocation of memory.

e Pillar 1 Evaluation: Success will be achieved if the package can (a) steadily reflect SoA within
my research group, (b) continuously involve 2-3 undergraduates in its development and testing, (c) and
successfully integrate into my SafeML class. Impact: This toolbox will accessibly open up advanced
verification methodologies to all power system researchers, and it will help the power community take
one step closer to actual deployment of data-driven models in the safety-critical realm of power systems.
Students in my class at UVM will learn how to verify over extremely large-scale ML models, and they will
get to see how physics-based models can be fused with data-driven ones for the purpose of verification.

* Qutreach Pillar 2: Power System Model Verification Competition. New Competition:
Across the power system, verification, and ML research communities, com- VerifyGridML
petitions have been a successful driver of research innovation. Engaging stu-
dents, researchers, and industry, these competitions include (1) the ARPA-
E GO competition [56, 137], for grid optimization; VNN-Comp [12, 61], for
NN verification; and “Learning 2 Run a Power Network” (L2RPN) [138-
140]/ “ML4Physics" [141], for ML control of power systems. The missing link
is a competition which focuses on ML verification for power grids.

Leveraging my experience with these existing competitions, this pillar will
design a new competition, called the Verification of Grid ML (VerifyGridML)
competition, which fills this gap. Designed as a tool to advance academic research, this competition will
also excite the growing group of students and scholars who want to work on safe-ML topics for power grid
applications. Furthermore, it will focus on solving industry relevant ML verification tasks which explicitly
incorporate grid physics. Competition test cases will be formulated with feedback from industry, and the
competition framework will serve as a useful tool for designing educational course projects (next pillar).

Grid



Finally, GridVerification. j1 will serve as the benchmark solver for the competition. To design the
competition, | will solicit help and formal feedback from Dr. Steve Elbert, who led PNNL's effort to
design and run the GO competitions [57] (see letter of collaboration from Steve).

The VerifyGridML competition itself with have two tiers: an educational tier, aimed at undergrad and
graduate students, and a more advanced research tier, aimed at researchers in the field. The educational
tier, which will target 10-15 small teams of students, will be advertised to STEM undergraduates at
UVM via the PI's SafeML course, via UVM’s local IEEE undergraduate club, and via the local Green
Mountain Section chapter of the IEEE Power and Energy Society (I am the secretary). To reach a more
inclusive set of students from underrepresented backgrounds, | will also advertise, and seek to actively
recruit, through UVM'’s Mosaic Center for Students of Color, the Prism Center, and the Women &
Gender Equity Center. In all advertising, | will draw strong connections between ML verification and the
increased deployment of renewable energy (which UVM students are highly passionate about). Winners
of the competition will have the chance to present their solution methodologies in front of industry
via VCREC [29] locally, and at an invited session of the PES General Meeting. Research shows that
competitions can be hugely beneficial for student learning [142]; | will try to tailor the educational tier
of the competition towards maximally capturing these benefits (i.e., teamwork, problem solving, and
bridging the theory/practice gap [142]). The more competitive research tier will be advertised through
PowerGlobe and my connections with organizers of GO, VNN, and L2RPN. This tier will focus on
realistically sized, industry motivated challenges beyond SoA. For both competitions, a set of rules will
be published, along with sample test cases, and teams will submit their verification software solutions
prior to a deadline, mimicking the ARPA-E GO competition structure [57].

e Pillar 2 Evaluation: The competition will be run annually, and it will be tethered to a domestic
summertime conference (most likely, the PES General Meeting). At the associated conference session,
results from the competition will be announced, and participating groups will have opportunities to share
their solutions. Impact: This competition will excite students and actively spur competitive research
advances (see, e.g., GO competition innovations [27,92,92,125]). It will also help stimulate a coherent
verification research community, and it will show industry our progress towards ML model verification.

* QOutreach Pillar 3: SafeML Course and Rural Qutreach. While there is much excitement about
ML at universities across the US, there are few (if any) ML courses which focus on the intersection of
engineering application and ML verification. This third pillar will focus on developing a UVM course
which will sit at the intersection of ML, power/energy systems, and verification. It will exploit both the
GridVerification. jl toolbox (for software and algorithm learning) and the VerifyGridML competition
framework (for student engagement and project opportunities). Entitled “Safe ML for Engineering”
(SafeML), this course will be experiential and project-based, where students have ample opportunity to
apply key algorithmic tools on various engineering applications. | will carefully curate all course material
(lecture notes, etc.) for productive dispersion across the power teaching communities (similar to courses
by Hao Zhu [143], Baosen Zhang [144]). For help with course design, | will work with Dr. Kieran Killeen,
Associate Dean for the College of Education at UVM. Kieran will guide me on curriculum development,
equitable student engagement, and course evaluation metrics (see letter of collaboration from Kieran).
To facilitate interaction with industry, | will recruit speakers from local engineering companies who use
ML, so students can hear their challenges and embrace use-inspired projects.

To have impact beyond the classroom, | also plan to interact with UVM Extension's 4-H pro-
gram [145], which engages young (K-12) and rural audiences from across the state of Vermont. Working
with Sarah Kleinman, who is the local 4-H director (see letter of collaboration), | will participate in 4-H's
Discover Engineering workshops, where | can showcase the importance of safe ML for, e.g., renewable
energy deployment. | will also interact with 4-H's farm safety, robotics, and automation program to
showcase the general principles behind ML verification in a fun and exciting way.



e Pillar 3 Evaluation: | will use frequent formative assessments (short, in-class quizzes and coding
assignments) to track student learning and engagement in the SafeML course, and | will use UVM's
new survey-based “ticket home” program to get frequent feedback on course pace, pedagogy and
inclusion. Impact: The SafeML course will force students to think about verified model performance
and trustworthiness, not just as an afterthought, but as an integrated part of the design and testing
processes. This course, and associated materials that are shared with 4-H, will engage a diverse array
of early learners, and it will expose them to entirely new and exciting ML-related challenges.

5. Research and Education Plan Synergies

In this project, research and education are inextricably linked . The SafeML class will train up a cohort
of students to participate in verification research and actively contribute to GridVerification.jl. To
spur active student engagement with both industry needs and technical algorithmic advances, | will design
capstone course projects based on grid code compliance verification. Specifically, | will solicit general
needs from local power system industry groups (e.g., ISONE), and | will spin these needs into related
capstone course projects. Results from these projects will be built into a special “dev” (i.e., development)
corner of the GridVerification. j1 software package, allowing project results to be shared widely with
potential users and developers. Exceptional projects will be encouraged for submission to a relevant
conference (e.g., the Conference on Computer Aided Verification). Core algorithmic advances from my
lab will be fused into Catamount. The Catamount, which is UVM's mascot, is a sleek and powerful cat,
and | plan to use its name and representation to excite and recruit Vermont students into this work.
Through this CAREER project, | plan to position Catamount to be competitive with verification solvers
and approaches from top-level companies (e.g., DeepMind, LatticeFlow) and universities (e.g., MIT,
ETH). Showing students that advanced, ML-safety technology can emerge from the most rural state in
the country [146], led by myself, who was born-and-raised in Vermont, will excite and motivate students
from diverse and underserved backgrounds to push the boundaries of science and technology.

The VerifyGridML competition will both push SoA and Actvity Y1]Y21Y3[V4) VS

RO 1.1: ML + Power System Modeling

engage a key, emerging group of researchers and students RO 1.2:PowerFlow Tightening
. . . - RO 2.1: Activation Function Tightening
who sit at the intersection of power and ML. | will inten- 2555 Tree Search Threat Derection

tionally market the competition toward students who want RO 2.3:Learning-Boosted Verification
RO 3.1: Grid Code Compliance

to have real-world engineering impact, but who also want Rro3.3: Bound Tightening for Optimization

. : Edu. Pillar 1: GridVerification.jl Software
to be involved with the push towards ML. The Gantt chart Edu. Pillar 2 VerifyGridML Competition

shows the research plan and educational4-outreach timeline.  Edu.Pillar 3: Safe ML in Engineering Class

6. Broader Impacts

Presently, the potential for society to benefit from, or be harmed by, ML technology is equally
unbounded. This CAREER project seeks to safeguard safety-critical engineering systems from the
unchecked risks posed by ML (i.e., avoid the harms), and remove the barriers associated with ML
deployment in highly beneficial contexts (i.e., embrace the benefits). Accordingly, this work directly
aligns to the White House's EO on Trustworthy Al [18], which seeks to boost the “verification and
assurance” of Al systems and foster safe deployment. Enticing students and young researchers into the
exciting field of power system ML verification will help train a generation of people who think critically
about the dangers of ML, not just in a hypothetical or “sci-fi” sense, but in a literal, “here’'s why the
model might cause damage” sense. My SafeML class will give engineering students the analytical and
software tools they need to have impact in the world of engineering + ML application. My advances will
help push verification technology out of academic research confines and into the power industry control
rooms. This will contribute to a more reliable, green, and equitable electrical power grid for everyone.

7. Results from Prior NSF Support

| have not received prior support from the NSF.
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