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Abstract

In order to optimize limited infrastructure, many power systems are frequently operated close to
critical, or bifurcation, points. While operating close to such critical points can be economically
advantageous, doing so increases the probability of a blackout. With the continued deployment
of Phasor Measurement Units (PMUs), high sample rate data are dramatically increasing the real
time observability of the power grids. Prior research has shown that the statistics of these data
can provide useful information regarding network stability and associated bifurcation proximity.
Currently, it is not common practice for transmission and distribution control centers to leverage
the higher order statistical properties of PMU data. If grid operators have the tools to determine
when these statistics warrant control action, though, then the otherwise unused statistical data
present in PMU streams can be transformed into actionable information.

In order to address this problem, we present two methods that aim to gauge and improve system
stability using the statistics of PMU data. The first method shows how sensitivity factors associated
with the spectral analysis of the reduced power flow Jacobian can be used to weight and filter
incoming PMU data. We do so by demonstrating how the derived participation factors directly
predict the relative strength of bus voltage variances throughout a system. The second method
leverages an analytical solver to determine a range of “critical” bus voltage variances. The monitoring
and testing of raw statistical data in a highly observable load pocket of a large system are then
used to reveal when control actions are needed to mitigate the risk of voltage collapse. A simple
reactive power controller is then implemented that pushes the stability of the system back to a
stable operating paradigm. Full order dynamic time domain simulations are used in order to test
this method on both the IEEE 39 bus system and the 2383 bus Polish system. We also compare
this method to two other, more conventional, controllers. The first relies on voltage magnitude
signals, and the second depends only on local control of a reactive power resource. This comparison
illustrates how the use of statistical information from PMU measurements can substantially improve
the performance of voltage collapse mitigation methods.
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Chapter 1

Introduction

1.1 Motivation

On an extremely hot day in July of 1987, the power system infrastructure in Tokyo Japan saw
a dramatic increase in demand as millions of air conditioning units were turned on line. This
demand spike occurred very rapidly and caused system-wide voltages to sag. Voltage collapse soon
followed, leaving almost 3 million people without electrical power. According to [25] and [30],
inadequate operational planning coupled with poor situational awareness were the primary causes
of the blackout. Unfortunately, this is not an isolated voltage collapse incident: in order to optimize
limited infrastructure, many power systems are frequently operated close to critical, or bifurcation,
points. Although often economically advantageous [13], such practices greatly reduce the stability
margins of the system and elevate the consequences of a rapid load build up or a sudden loss
of stochastic renewable resources. This ultimately leaves power systems more vulnerable to the
devastating effects of a catastrophic phenomena known as voltage collapse. To show its pervasiveness,
[23] lists 26 voltage collapse related power system failures which have occurred over the last few
decades. One of the more recent entries is the Northeast Blackout of 2003. At a total cost of over
$6 Billion and 11 lives lost, this event caused 50 million people to lose electrical power for a period
of time. Although there were a variety of factors which lead to the outage, including ground faults
and relay trips, the event ultimately crescendoed in voltage collapse caused by severely overloaded
transmission infrastructure. According to a report compiled by U.S.-Canada Power System Outage
Task Force directly after this incident, one of the four primary contributing factors to the collapse

was an “Inadequate level of situation awareness” [2]. Despite the advent of the Phasor Measurement
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Unit (PMU) and other advanced data collection techniques (such as fiber optic links and web based
data sharing), situational awareness will only be achieved when control centers have the necessary
tools to process and interpret these data. Through the work presented in this thesis, we hope to
introduce methods which will contribute to transforming real-time high sample rate data collected
from PMUs! into “actionable information” which will enhance the overall situational awareness of

power grid operators.

1.2 Voltage Stability Concepts

Power systems are liable to experience a variety of critical transitions, including Hopf, pitchfork,
and limit-induced bifurcations [26]. In this paper, though, we are primarily interested in factors
associated with a classification known as Long Term Voltage Instability (LTVS). As outlined by
the IEEE/CIGRE Joint Task Force on Stability Terms and Definitions [24], LTVS involves slower
system changes associated with reactive power limits on generators (caused by field or armature
current limiters), tap changers, and sustained load build up. A general definition of voltage stability

(both long term and short term) is given by the authors of [24].

Voltage stability refers to the ability of a power system to maintain steady voltages at all
buses in the system after being subjected to a disturbance from a given initial operating

condition. (Kundur et al. 1390)

Power system operators are interested is maintaining acceptable LTVS in order to achieve two
primary goals. The first and most obvious reason is so that voltage magnitudes remain in an
acceptable region (typically between 0.95 and 1.05 p.u. (V)). The second reason is to avoid Voltage
Collapse. As shall be shown, keeping an acceptable voltage magnitude profile does not always
guarantee avoidance of voltage collapse, and even if a system is far from collapse, it still may have
undesirably high or low bus voltages. Therefore, even though these two goals are interlinked, they
are also highly decoupled in the sense that they must be addressed independently. Short term
voltage stability, on the other hand, relates to electromechanical transients present in synchronous
generators and transmission lines along with the dynamics of fast acting loads [24]. This thesis

focuses on the slower progression towards voltage collapse rather than the short term instabilities.

ITo see of full list of common acronyms used throughout this document, refer to Appendix B.



1.2.1 Formulating the Power Flow Problem

Before further discussion on LTVS, we wish to succinctly derive the algebraic equations associated
with the power flow problem; we employ them extensively in later chapters. Such an overview can
be found in a variety of power system analysis textbooks [5, 21]. We begin by considering the two
bus system shown in Figure 1.1. The pi model places a series admittance between the buses, and
it distributes one half of the line’s shunt capacitance to each bus. This is also know as the Unified

Branch Model.

e = |Fpele’®e = G +jB

—— JjBa JBsn ——

Figure 1.1: Two Bus Pi Model with Off-Nominal Turns Ratio Transformer

When standard transformers exist in a per unit transmission system, their presence (aside from
losses) can be neglected unless they have an off nominal tap ratio or a phase shifting capability.
Figure 1.1 shows the presence of such a transformer incorporated into the standard pi circuit
model. The currents?® I, ¢ and ft ¢ can be derived using Kirchhoff’s Current Law and the
transformer equations. The voltage across the secondary side of the transformer is given by IN/Jﬁ and
can be computed by rearranging the following equation, which relates turn ratios to winding
voltages. The secondary side current I }’t can be found in very similar way (notice the necessary

complex conjugate operator on the current equation).

if f/ 7 if
— V _ 1.1
c 1 ! c (1.1)
Iti (0) = I}7t (1) = FIVJQ,t =174 ()" (1.2)

2To see a full list of the technical notation used throughout this document, refer to Appendix A



We can use the known bus voltage values to compute the unknown currents.

T 7 ‘Bs 7 =7 ~
o =77 (352) + (7 - ) @ (13)

g =¥ (4552) + (% - %) 7 (1.4

The expressions for primary side winding complex voltage and complex current can be found by

substituting the previous expressions.

I = S (1.5)

oy =7 (i5) + (Vt - ‘Q‘> (3) (1.6

Both of these current values can now be placed in matrix form.

Y.t tJ *Fyvf,t
U Bty B Y (17)
Ii s e g, 4 B Vi

It can be noted that if the transformer does not cause phase shifting, the admittance matrix of (1.7)
is symmetric (because ¢ is purely real). Further, if the transformer also has a nominal turns ratio,

the admittance matrix simplifies to the following symmetric matrix.

Uge+ 55" ~Yf. | Yrr Yia

~Upe  Gpe B Yiy Yi

As will be shown, (1.8) is essential for the development of the Power Flow Problem. We now

formally introduce the Y bus matrix which is defined in the following way:

Y;; = sum of admittances connected to bus i

Yir = -(sum of admittances connected between bus ¢ and k) for i # k

Because the pi circuit model is used, the shunt admittance between any two buses is shared (equally)
in the diagonal terms. This is only true, though, if no transformer with an off nominal turns ratio is

present. When such a transformer is present, we must employ the admittance values given in (1.7).



For bus ¢ in a power system, nodal current I; is defined as the injected nodal current. Using
Kirchhoft’s Current Law, these injected currents can be calculated. The term y; ; is an admittance
value, while Y; ;, is a Y-bus value. The following analysis is completed for a system with ¢ =1 in
order to simplify calculations. The results hold for the general case, though. For a 3 bus system,
where transmission lines connect bus ¢ to buses j and k, nodal current injection at bus 7 is computed

as follows:

1= [V = V) + 320+ [uavi - ) + 555, (19)
\
.B; ; . B;
L=V, [yu i ik +J2’k] + Vi [=yi 5] + Vi [=yi ] = Vi(Yia) + V;(Yi;) + Vi(Yiw) (1.10)

Alternatively, the equation for the injected nodal current in a generalized system can be written

using the sum of the admittance bus elements. We assume there are N total buses in the system.
N
L= YiuVi i€N (1.11)
k=1
The previous expression can then be vectorized.
I=YV (1.12)

where V = [V}, V5..Vy]|" and I = [}, I5...Ix]". Once injected currents are known, injected complex
power can be calculated. At each bus, this is simply the product of the voltage and the complex

conjugate of the injected current.

*

P +jQi =V, ieN (1.13)

N
Z Yk Vi
k=1

At this point, phasor notation of the voltages is invoked, and the admittance values are written in

rectangular coordinates.

N
Pi+jQi=Vi Y Vied 0 (G — jBiy] ieN (1.14)
k=1



The voltage angle difference between node i and k is now defined as follows.

0; — 0 = 0, (1.15)

To decompose (1.14), the voltage phasor is split into rectangular coordinates.

P+jQ; = V; Vi, [cos(0; 1) + jsin(0ix)] [Gix — JBi k]

M=

k=
N

1

= V; Vi [Gi,k COS(ei,k) + Bk Sin(@iJg) + 3Gk Sin(9i7k) — 3Bk COS(9i71€)] ieN
k=1
Now that the power injection expression has been decomposed, it can be separated into its real and

reactive power components. Following are the steady state power flow equations.

N

P, =V; Z Vi [Gi,k COS(@Z',]C) + Bi,k sin(@iyk)] 1N (1.16)
k=1

Qi=V; Z Vi [Gigsin(b; ) — Bipcos(ix)] i€N (1.17)
k=1

In order to solve the traditional power flow problem via Newton Raphson, we populate vector x
with the unknown voltage phase and magnitude variables from the appropriate sets, as noted by the

subscripts.

We then build the Jacobian matrix and iterate towards a solution which drives the mismatch power

injection vector to 0.

OP:(x) OPz(x)

J(x) = 06 o (1.18)
0Qprq(x)  9Qpq(x)
00 ov

1.2.2 Modeling Voltage Collapse

To have a clear understanding of how to achieve LTVS, Voltage Collapse must be understood.
Voltage collapse is a type of instability experienced by heavily loaded power systems which encounter

monotonically decreasing voltages to the point of blackout [22]. In order to study any power system,
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mathematical frameworks must be employed which models the physics of the real system. These
models consist of a series Differential and Algebraic Equations (DAEs). A framework for these
equations is given in [27].

x f(x,y,\p)

— (1.19)
0 g (x,y,\,p)

In this case, x includes the differential state variables, y includes the algebraic variables, A is
the bifurcation parameter (such as slow load build up) which the operator has no control over, and
p represent controller set points (such as tap settings). Finally, f and g are the differential and
algebraic functions which govern the system. The algebraic power flow equations® describe how
the power flows through the transmission system, while a series of differential equations model the
dynamics of the voltage controllers, governors, and machine models of the generators in a system.
Since these equations (the power flow equations in particular) are nonlinear, there can be a variety
of stable and unstable mathematical solutions for a given system operating point. Voltage collapse is
typically considered to be a type of Saddle-Node bifurcation [11]. In this sort of bifurcation, multiple
equilibrium points (or solutions) merge together and disappear [26] as the bifurcation parameter A
changes. In [11], Dobson et al. demonstrate mathematically how the stable and unstable operating
points coalesce at the bifurcation point for a system with a single state variable. They also consider
how the mathematics change once dynamic parameters (dynamic loads, tap changers, and generator

limits) enter the system model. As they conclude,

Voltage collapse takes place when the system state falls into an expanding collapse re-
gion. A special case of the this theory is when bifurcation occurs and leads to loss of
equilibrium. Then, the whole state space becomes the collapse region. (Dobson et al.

45)

Hence, there may be regions in the state space which corresponds to monotonically decreasing bus
voltages (a sign of voltage collapse) even if the saddle node bifurcation point is never actually reached.

For LTVS analysis, the slowly varying bifurcation parameter ) is often treated as load level. We
now consider the load model, as it has an important impact on the bifurcation point. In [29], the
ZIP load is introduced. In this load model, a fraction of the load is modeled as having a constant

impedance, a fraction is modeled as having a constant current demand, and a fraction modeled

3 Although differential equations are required to model the electromagnetic dynamics associated with transmission
line flows, these dynamic processes are much fast than the dynamics of the machines and thus assumed instantaneous
[16]. The power flow equations are thus reduced to a set of algebraic equations.
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as having a constant power demand. Mathematically, this can be described by a set of algebraic
equations.

Pyip =k (aV? +aV + P,) (1.20)
Qzip =k (BV? + bV + Q.) (1.21)

Where Pzip and Qzp are the active and reactive loads at a bus and the coefficients a, b, a, and
determine the percentage of the load which should be governed by Z, I, or P. What is very important
to note, though, can be seen in Figure 3 of [29]. Using a dynamic load model, they show that even
though the maximum power transfer point (MPTP) for a simple two bus system sits on the nose
curve of the PV curve, the SN bifurcation point occurs after this point; it sits on the low voltage side
of the nose curve. For this reason, load models are extremely important to consider when studying
voltage collapse, as stability margins can be shifted drastically depending on how the loads respond
to voltage sag. Indeed, a system that relies exclusively on constant current and constant impedance
loads cannot even be used to assess voltage collapse [7].

As noted in the supplementary information of [7], relying on constant power load models is very
common in the voltage collapse literature when dealing with steady-state security analysis. Indeed,
all of the analysis performed in this project assumes a balanced three phase system operating in
sinusoidal steady state where all of the loads are constant power (with a slight frequency dependence
during dynamic simulation). In fact, [7] notes that constant power analysis is actually the most
conservative analysis which can be performed (when compared against an alternative ZIP load
model), as numerical limits are hit much sooner with constant power loads. It therefore directly

exposes the transfer limitations of a transmission system.

1.2.3 “Static” Voltage Collapse Analysis

The authors of [24] note that static analysis, where the dynamic models of power generation and
fast acting loads are not considered, is often times an adequate approach for gauging LTVS margins
and system performance. For example, [7] encodes the system-wide voltage phase shifts into the
susceptance matrix of the network. After computing the open circuit voltages of the networks, an
iteration free and closed form condition based on the decoupled power flow equations is developed
which attempts to guarantee a unique, stable, high-voltage solution. In order to explain this method,

we begin by writing out the reactive power injection equation at bus i for a lossless transmission



system (where Gy, sin(f;) < Bjj cos(;)) with K buses.

K
Q;nj = —Vi Z VkBik COS(@ik) (1.22)

k=1
We now introduce a new term B;-k which is the product of the voltage phase shift between buses
and the susceptance (or strength of connection). This term is substituted in to the reactive power

flow equation.

B, = Bij, cos(6;z) (1.23)
\’
N K
QM =—V.) ViBy (1.24)
k=1

We now re-order the system such that buses 1 through n are load (L) buses while buses n+1 through
m are generator (G) buses. We then partition the susceptance matrix and thus define the following
Coupling Matrix:
B = BILL B/LG (1.25)
Bar  Baa
This matrix serves the following purpose. In typically loaded power system, we have the following

relationship between complex current injections, complex bus voltages, and the Y bus matrix:

I=YyV (1.26)

We now write a very similar expression this in terms of voltage magnitudes, current magnitudes,

and the coupling matrix for our lossless, reordered system.

I=BV (1.27)
\
I B, B \Ys
- WeTe . (1.28)
Iq By Bug Vg



In the open circuit model, there will be no current flowing into the load buses.

IL =0=B;, VL + BcVg (1.29)
\

—By VL = BoVa (1.30)
A

Vi = -B1'Bie Ve (1.31)

This is how we define the pseudo-open circuit voltage vector V7 of all the load buses. Of course, we
have encoded the voltage phase shift into the matrix B/7 so this is not a true open circuit voltage
(OCV). The vector Vg contains all of the generator set point voltages. Next, the authors of [7]

introduce a critical matrix Qcyit.
1 . * 4 . *
Qerit = Zdlag(VL)BLLdlag(VL) (1.32)

To understand how this critical matrix has been derived, we apply the reactive power flow
equations to a simple 2 bus power system with generator bus ¢ and load bus k£ with a single lossless
transmission line connected in between. Next, we compute the reactive power injections at the load

bus, where V; is the voltage magnitude of the load and V}, is the voltage of the generator.

Q™ = —V2B;, — V,V,.Bj, (1.33)
We invoke the use of the open circuit voltage V*. From above, we compute it in the following way:

1

V' =-B1'BigVe = — 5By Vi (1.34)
4
V'B,

——— =Y 1.35

Bik * ( )
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We can now redefine the reactive power injection.

. , V*B.\
QM = -VIB;+V; ( J22 ”) Bi (1.36)
ik
4
0=V2B,, — V,V*B,, + VIQ™ (1.37)

Of course, the open circuit voltage is static, as is the susceptance B;Z We can therefore solve for V;

using the quadratic equation.

V*B,, + \/ (V*B,,)? — 4B,,Q

i 7 1.38
35 (1.38)
There is therefore a critical reactive power injection which cannot be exceeded.
SN2 P

(V*Bu‘) - 4B¢¢Q$Jit =0 (1.39)

\

X 2

mj _ (V*By) 1B V)2

) =~ = _B; 1.40
chlt 4B“ 4 ( ) ( )

The similarity between (1.32) and (1.40) is clear. In this case of the two bus system, if Q™ = Q™

crity

then we have the following:

_V*Biij:\@_\/;‘

v, 2B, 5 (1.41)
The collapse voltage is one half of the open circuit voltage. They then define A = qc‘iit. Then we
have the following;:
5y = 1+ \/QH _ |VZ\7;<V:‘| (1.42)
When ¢ = gerit, A =1 and

3
Retuning to a generalized n bus system, we now put the reactive loads in the vector Qp, = @1, ..., Qn.

Finally, we can compute the voltage stability index A.

11



A=Al =@t (1.43)

According to the authors, a necessary and sufficient condition for voltage collapse is that A > 1.
Of course, this assumption is based on the decoupled power flow equations, so it is an optimistic
upper bound, and it assumes that the collapse voltage is approximately one half the open circuit
voltage (as shown above). In a system with a low power factor (lower than 0.9 lagging), this
assumption is adequate, but in many other situations, voltage collapse can occur well before A = 1.

We implemented this method on the IEEE39 bus system and applied increased uniform loading
and generation until the system reached a collapse condition. Results from four tests are presented
below. In the first test, the line resistances on all 46 lines were set to 0 to ensure a lossless oper-
ating paradigm and the average power factor of the loads was set to 0.90 lagging. Clearly, in this

situation,A approaches the unity threshold when the system experiences a MPTP.

—— Bifurcation Load Factor

0.8r - N

0.6- - - 11

Stability Index A

1 11 12 13 14 15 16
Load Factor

Figure 1.2: Stability Indices for each bus of the IEEE39 Bus System as Load Factor is increased
right up to voltage collapse. The system parameters have been adjusted so the transmission lines
are lossless (the Y-bus matrix is purely imaginary) and the average power factor of the loads is 0.90

lagging.

In the second test, the line resistances on all 46 lines were not set to 0, but the average power
factor of the loads was set to 0.90 lagging. Clearly, in this situation, A is still an adequate measure

of distance to collapse, but it under-performs the lossless system.

12



—— Bifurcation Load Factor

Stability Index A

1 11 1.2 13 14 15
Load Factor

Figure 1.3: Stability Indices for the Lossy IEEE39 Bus System as Load Factor is increased right up
to voltage collapse. The system parameters have been adjusted so the average power factor of the
loads is 0.90 lagging.

In the third test, the line resistances on all 46 lines were not set to 0, but the average power factor
of the loads was set to 0.97 lagging. Clearly, in this situation, A begins to become a very poor

indicator of distance to bifurcation.

—— Bifurcation Load Factor

Stability Index A
o =} o
N @ &

o

11 12 13 14 15 16 17 18
Load Factor

Figure 1.4: Stability Indices for the Lossy IEEE39 Bus System as Load Factor is increased right up
to voltage collapse. The system parameters have been adjusted so the average power factor of the
loads is 0.97 lagging.

In order improve the inadequacies of this method (assumptions of lossless-ness and decoupling), we
attempting to answer the following question: For a load bus with demand (P; + jQ;), what
value of (0 + jQF) will cause an equivalent voltage drop across the transmission lines?
Using a series of linear algebraic load transformations, we transformed all complex loading into

purely reactive power loads which caused the same system-wide voltage profile. Although this was

13



successful, (1.43) was still not able to give us an accurate measure of distance to collapse under

this transformation.

1.2.4 Voltage Stability Index

There are a number of other ways to employ static analysis in order to gauge proximity to voltage
collapse. In [32], the authors employ a method for gauging proximity to voltage collapse by defining
a ratio of voltage drop across a transmission line. Consider the simple two bus system shown in

Figure 1.5. As shown, the sending side voltage is fixed at 1 per unit with a phase angle of § = 0°.

Bus f Bust

v, = |V,|e’®
R+jX

Py +j0O¢

Figure 1.5: Simple two bus system circuit with fixed “from” bus voltage magnitude and phase

In order to solve for the load bus voltage as a function of power, the following relationships can be

used. N . N
S B/ (A NS B
S—VtIt—Vt<R+jX> —VtR_jX (1.44)
N2
~ ~ —~ |2
(R—jX)S=V,— |V (1.45)

Given resistance, reactance, and complex load parameters, the roots of (1.45) can be solved for,
thus determining the phase and magnitude of the “to” bus voltage as load is increased. In Figure
1.6, this is done for several power factor profiles (R = 0.1 and X = 1.0). The complex power at the

load is continually increased and the complex voltage at the receiving (or “to”) bus V; is monitored.
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Figure 1.6: Complex Receiving End Voltage for Maximum Loading Conditions

Ramirez et al. claim that at the maximum loadability point (the point of voltage collapse), the
ratio of the voltage drop across the transmission corridor to the “to” bus voltage is equal to one.

This ratio functions as a Voltage Stability Index.

|AVis|

VSI =
Vil

-100 (1.46)

The results presented in Figure 1.6 indeed validate the claim that the voltage stability index ap-

proaches 1 as the system approaches voltage collapse. Mathematically, this is shown below.

‘Vf - Vt’ (1 +40) — (0.5 — j0.57265)  0.7602
]‘Z‘ N 0.5 — 50.57265| ~0.7602

Leading Power Factor:

-
Unity Power Factor: — =
Vi

|(1+j0) — (0.5 —j0.45)]  0.6727
|0.5 — 50.45] ©0.6727

Vf—ﬁ‘ |(1+40) — —7J

. j0) — (0.5 — j0.34405)]  0.6069
Lagging Power Factor: — = - = =
v, |0.5 — 50.34405] 0.6069

Clearly, maximum power transfer occurs when the ratio of the voltage drop is equal in magnitude
to the load side voltage. In [32], the authors suggest using an alarm of some sort. For instance,
if the VSI exceeds 80%, remedial action must be taken. Although this is a highly useful metric,
its application is limited since most transmission systems are configured in some sort of a meshed

network. An example is shown in Figure 1.7.

15



To Distribution

From Transmission
(Generation)

To Distribution

Figure 1.7: Transmission to Distribution Meshed Network

We have circled two subsets of buses since the methods in [32] focus on reducing meshed circuits
into equivalent one-line diagrams on which 1.46 can be applied. The methods presented leverage a
number of assumptions and are not universally applicable, but they still provide insight into new

ways for thinking about the voltage collapse problem.

1.2.5 Voltage Collapse and the Power Flow Jacobian

The presence of voltage collapse results in the AC power flow equations failing to converge to a
solution (via Newton-Raphson) [11]. Indeed, when a MPTP has been reached and the system
experiences a saddle node bifurcation, the power flow Jacobian becomes singular [1]. There is a vast
range of literature on different methods for gauging proximity to voltage collapse using the power
flow, or load flow, Jacobian [38, 8, 14]. Singular value decomposition, modal analysis, sensitivity
functions, and other power flow related methods all attempt to make determinations about where
different parts of the system are operating on the nose curve and what sort of margin exists between
stability and collapse. This topic is explored further in chapter 2 where we introduce a method
which can use the participation factors of the reduced power flow Jacobian in order to weight or
interpret real time phasor measurement unit data.

Although this sort of analysis is useful, it has been understood for many decades that system-wide
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voltage stability cannot be determined exclusively by the condition of the power flow Jacobian. As
identified by Sauer and Pai in [36], the absolute upper limit on system loadability is seldom reached,
as the dynamics of the system will generally become unstable before the power flow Jacobian reaches
singularity. This fact is confirmed in [35], where it is shown for a number of test cases that a Hopf
bifurcation often precedes the saddle node bifurcation associated with voltage collapse. Additionally,
reference [36] shows that only under very strict system conditions can analysis of the load flow
Jacobian ever show signs of dynamic instability. Our experiments do no meet these conditions. The
methods in this thesis primarily (but not entirely) apply static analysis to the LTVS problem, so we
readily acknowledge that they do not address the full spectrum of problems associated with power

system stability (such as the Hopf bifurcation).

1.2.6 Voltage Collapse on the 2 Bus Power System

From generation down to transmission and distribution, there are a variety of mechanisms in a
power system which hold system voltages high: Automatic Voltage Regulators, capacitor banks,
tap changing transformers, and various other Flexible AC Transmission System (FACTS) devices.
Predicting the onset of voltage instability, therefor, is made difficult thanks to the effort made by
these devices to holds system voltages high [7]. Although switched shunt capacitors and dynamic
tap settings maintain acceptable voltage profiles, they effectively conceal the low stability margin
to (1) the operators and (2) the control devices which depend on voltage magnitude signals. To
understand why this is the case, we perform algebraic analysis on the system shown in Figure 1.8.
In this system, a constant voltage (Vy = 1e/9) generator is placed at the “from” bus, and a constant

power injection (P; + j@Q;) is placed at the “to” bus. Capacitive shunt support is also placed at the

load bus.
Bust
Ve
e = |Frele’®re =G +jB T
L <
—— JBs jBsn —— JBs
T °? 2T P, +JQ;

Figure 1.8: Two Bus Power System with Tap Changing Transformer and Shunt Support
17



Appendix C outlines the process of solving for the load bus voltage magnitude V;. The derived
expression uses series admittance (conductance & susceptance) terms. Line parameters are usu-
ally given in terms of series impedance (resistance & reactance). The relationship between these

parameters is given below.

1 1
_ S S 1.4
R %{G_H,B}:>G %{Rﬂx} (1.47)
xegl_t lop_gl_t (1.48)
G1jB R1jX

1.2.7 PV Curve Analysis: Graphical Results

In order to investigate the relationship between V; and loading, power factor, tap settings, and
shunt support, we set out to draw a range of PV curves. Before we do so, though, we consider the
bifurcation point. This occurs when the low voltage solution and the high voltage solution coalesce
and disappear. For a 2 bus network with regulated “from” bus voltage, we may predict when this
point will occur by looking at the inner radicand of the quadratic expression for V; (see Appendix
C). The MPTP occurs when it equal to 0.

G? B?

c? c2

Bsh
B;
2 +B:)

2
(QPDG —28Pp(B + ) —4 (02 +(B+ % + BS)Q) (P +B°Pp) =0 (1.49)

Clearly, the bifurcation point, even for a two bus system, is concealed in the complex relationships
of the system parameters. We now draw the PV curves for the system. Before doing so, we define
the following parameters for the system. Obviously, these parameters are more representative of a

large scale transmission system rather than a distribution system.

R=10.01
X =0.1
Bsh
=0.5
2

For the first set of PV curves, consider the situation where there is no voltage support. Therefore,

we encode the following parameters:



B;=0

We draw the PV curves for a system with the following power factors: 1.0, 0.95, and 0.80.

14 :

—— PF=1.00
1.2f —— PF=0.95|
—— PF=0.80

0.81

0 1 2 3 4 5
System Load P

Figure 1.9: Load Bus Voltage as a Function of Pp for Various Power Factors (¢ = 1 and By = 0)

What can be noticed is that as power factor drops, the MPTP gets pushed closer to the y-axis
(essentially, the system can handle less and less load). What should also be noticed is for higher
power factors, the MPTP occurs closer to nominal system voltage. Next, we plot the same system

with a fixed power factor and variable tap ratios.

14

c=10
1.2F —— =095 |
' c=09

0.8 1
0.6 1

0.4 1

00 1 2 3 4 5
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Figure 1.10: Load bus Voltage as a Function of Pp for Various Tap Ratios (PF=0.95, B; = 0)

As the tap ratio is decreased (which effectively raises the voltage on the secondary), more voltage
support is applied, but again, the MPTP is pushed closer into the nominal voltage range. This can
act to conceal the true stability margin of the system. Next, we plot the same system with a fixed

tap ratio and variable shunt support.
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Figure 1.11: Load Bus Voltage as a Function of Pp for Various Levels of Shunt Support

Again, it is shown how supporting voltage has the affect of pushing the MPTP closer the nominal
system voltage. To prove this point, we edit the previous plot by adding two lines: one shows an
arbitrary minimum tolerable system voltage (0.90 p.u.), and one showing the voltage magnitude at
the MPTP for each paradigm. The distance between these lines represents the voltage stability

margin of the system.

System Load PD

Figure 1.12: Load Bus Voltage as a Function of Pp for Various Shunt Values. Green Voltage
Magnitude Traces are shown: the lower trace connects the noses of the PV plots while the upper
trace shows an arbitrary minimum tolerable system voltage.

Clearly, as the shunt support and loading jointly increase, the stability margin effectively decreases
for a given voltage magnitude. We consider these three systems operating at 0.9V with their

respective loads, and we consider the stability margin (in terms of Pp) for each system.
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Shunt Support Load Bus Voltage (pu) Stability Margin (pu)

B;=0 0.9 0.8260
B, =05 0.9 0.5260
B;=1.0 0.9 0.3060

Table 1.1: 2 Bus System Stability Margins

Although each system has the same mean load bus voltage, the stability margin of the third system
is less than half of the first system (of course, the third system sees a much higher load). We can
begin to understand the stability margin by considering the derivative of the nose curve. For each
system, at the point of bifurcation, the derivative of the curve, with respect to Pp, approaches

—00. In the following table, we take the derivative of each curve when voltage is 0.90 p.u.:

Shunt Support Load Bus Voltage (pu) Derivative (pu/pu) Derivative Squared

B;=0 0.9 —0.1315 0.0173
B; =05 0.9 —0.1784 0.0318
B;=1.0 0.9 —0.2536 0.0643

Table 1.2: 2 Bus System Nose Curve Derivatives

Again, although the nominal bus voltages are equal, the derivative of the third curve is more than
twice as large as the derivative of the first curve. The final column of the table represents the
square of the derivative. This value will be proportional to the variance of the load bus voltage, as

will be shown in the following section.

) av,\?
v ™ \dpp
1.2.8 Using Variance to Define a Stability Margin Threshold

As load increases and a system moves farther out on the PV nose curve, the variance of the load
bus voltage (which is driven by the load noise) also increases. In order to quantify the bus voltage
variance 0\2/“ the Delta Method may be used in order to compute the variance of the load bus voltage
function. To show how to do so, a function g(X) is linearized via the Taylor Series approximation.

The linearization point is px, which is the mean value of the random variable X.

9(X) = g(px) + 9" (px) (X — px) (1.50)
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Next, the variance operator is applied to both sides of the expression.

Var (9(X)) =~ Var(g(px)+g'(px) (X = px)) (1.51)

~ ¢ (ux)*Var (X)

Therefore, we have that the variance of g(X) is approximately equal to the variance of the random

variable X weighted by the squared first derivative of the function g evaluated at the mean value of

X.
o) = 9 (ux)*ok (1.52)

If we have knowledge of the load noise and the load mean, we can quantify U\Q/t by taking the

2
A%
2 t 2
oy~ o 1.53
" (dP D E[m]) " 159

The following two figures show this method in action. A two bus power system is simulated, and

derivative of 77.

the load noise is increased proportionally to the increase in load. At each step, JIQDD and E[Pp] are
numerically calculated, and then O'\Z/t is analytically computed. For increasing load values (up to

Pp =~ 1.29), we compute the variance with (1.53).

5

x 10

Bus Voltage Variance
D

11 1.2 13

8.8 0.9 1
System Load B’

Figure 1.13: Bus Voltage Variance as Load Increases (Variance computed analytically)

The load can be increased even more (up to Pp = 1.37) in order to show the dramatic effects of
increased loading on variance. Clearly, the variance approaches oo as the loading level approaches

the nose curve.
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Figure 1.14: Bus Voltage Variance as Load Increases (Variance computed analytically)

One way of predicting the distance to static voltage collapse, which we leverage heavily in Chapter
3, is by drawing the nose curve for a system, defining a complex power stability margin on the curve
which should not be exceeded, and then calculating the (steady state) bus voltage variance at this
threshold. A full dynamical system model, as reviewed in section 3.2, is employed in computing this
expected variance. If measured bus voltage variance exceeds this calculated variance value, then the

complex power stability margin has been crossed (assuming perfect model and measurement data).

1.2.9 PV Curve Analysis: Increasing Reactive Power Injection

In order to show how much more useful variance, rather than voltage magnitude, is in assessing
voltage stability, we formulate the following experiment. For the two bus system depicted in Figure
1.8, as load is increased, reactive power (via increasing shunt support) injection is also increased
in order to keep voltage magnitude constant. The power factor of the constant power load is kept

constant at 0.97 lagging.
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Figure 1.15: Load Bus Voltage Magnitude and PV Curve Derivative Squared as a Function of System
Load (PF = 0.97 and ¢ = 1). In the top plot, shunt support is non-existent. In the bottom plot,
shunt support increases (from 0 to 1.75) to hold load bus voltage constant as load increases.

There are a host of other conceivable situations where bus voltage variance increases dramatically
while bus voltage magnitude remains relatively fixed. For example, a tap changer or an
auto-transformer can hold voltage magnitude high while the stability margin of the system
diminishes. Additionally, a situation can arise where the power factor of a load swings high while

the loading of the bus increases. This situation is shown in the following figure.

o L
215 0.063
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©
o5 /// 10.022
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Figure 1.16: Load Bus Voltage Magnitude and PV Curve Derivative Squared as a Function of System
Load (Bs = 0 and ¢ = 1). In the top plot, power factor is fixed at 0.80. In the bottom plot, power
factor approaches unity as load increases.
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1.2.10 PV Curve Analysis: Variance as a Robust Stability Margin Thresh-

old Indicator

In the previous subsection, we introduce the concept of the voltage stability margin for a constant

power load. In [22], Dobson’s research group presents the loading margin in the following way:

For a particular operating point, the amount of additional load in a specific pattern of
load increase that would cause a voltage collapse is called the loading margin. .. Loading
margin is an accurate measure of proximity to voltage collapse which takes full account

of system limits and nonlinearities. (Greene et al. 262)

As discussed in 1.2.2; voltage collapse is a dynamic event which requires the full set of system DAEs
to be understood. Since we are concerned with identifying the point of “static” voltage collapse
in this project, we employ loading parameters, set points, and control settings, along the algebraic
equations and system topology which link these quantities, in determining the location of a fold
bifurcation (or MPTP). This method is validated in [12]. Although we use a full DAE system model
to (1) estimate the system’s algebraic variable covariance matrix and (2) validate the stability of the
system with dynamic time domain simulations, the methods we employ for gauging the distance to
voltage collapse do not consider the dynamics of the system. [12] acknowledges that even though
dynamics can be disregarded when studying the point of fold bifurcation, analysis of an oscillatory
Hopf bifurcation requires a full system model, and Hopf can occur before, during, or after the fold
bifurcation.

As outlined in the previous subsection, variance measurements can be used in real time to
determine proximity to a threshold. To compute this threshold, though, we base out continuation
method on scaling the complex power load such that the power factor of the load does not change.
For a two bus system, though, if power factor of the load does change while loading increases, will
the variance threshold still represent a valid, predefined stability margin?

To investigate this question, we consider an example. We start by defining the following pa-
rameters for the system. Once again, these parameters are more representative of a large scale
transmission system rather than a distribution system, and they have been tuned for a convenient
bifurcation point.

R =0.013
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Beh
— = 0.5
2
B;=1.0

This operating paradigm, with a power factor of 0.90 lagging, has the following nose curve.
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Figure 1.17: 2 Bus System Nose Curve for PF = 0.90

If the system is operating at Pp = 2.5, then V; = 1.027 and 3 = tan (cos™! (PF)). Let’s now
assume that the critical threshold (which the operator does not want to pass) is located at
Pp = 2.75. This means that at the critical threshold, Pp can increase by 0.25 before collapse is

reached (3.0 — 2.75). This corresponds to the following amount of complex power.

S = 0.25(Base)
= 0.25(1 + j0.484)

0.25 + j0.121

Therefore, we have defined the following stability margin.

Stability Margin = 0.25+ 50.121

If the stability margin is reached on the nose curve, the load bus voltage will be V; = 0.953. The
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derivative of the nose curve in Figure 1.17 at Pp = 2.75 has the following numerical value.

dVy

= —0.3648
dPp

This is an important value since the bus voltage variance at the load is proportional to the square

2
A
2 t 2
oy~ o 1.54
v (dP D E[PD1> e 1oy

According to the noise model which we are using (it shall be formally introduced in the next two

of this derivative value.

chapters), 0'123D = “%JD o2, where up, is the average value (or operating point) of Pp, and o, is the

standard deviation of the noise which is applied to the load (it can also be thought of as 012% when
up, = 1) . For this example, we set 02 = 1 for simplicity. Obviously, the magnitude of the load

scales the noise. Therefore, the bus voltage variance can be analytically calculated.
or%,t = 1.007

We now perform the following experiment: the power factor of the load is raised to 0.95 (reactive
demand drops low), and the load increases from Pp = 2.5 up to a value such that bus voltage

variance hits 1.007. The load value at which this occurs has the following properties.

PF =0.95
Pp =3.1474
Vi = 0.977
oy, = 1.007

When the original system (PF = 0.90) experienced this sort of bus voltage variance, it had a
stability margin of 0.25 4+ 70.121. When power factor swings high and a BVV of (7\2,t = 1.007 is
experienced, the new stability margin is 0.2374 + j0.115. Using this noise model, therefore, we find

that the change is stability margin is small.

[0.25 + 50.121] — [0.2374 + j0.115]
0.2374 + 50.115]

100 x =5.3%
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For a drastically altered power factor, we find that the original stability margin is still an
acceptable estimate of the distance to voltage collapse in this situation despite the fact that it is
slightly too liberal. Intuitively, if power factor swings low, we will witness the opposite phenomena:
our original stability margin estimate will be too conservative (a more probable situation and a
more desirable problem). Assuming the power factor does not change by more than £0.05 in either

direction though, the stability margin estimate will be a reliable figure.

The most important take away from this analysis, though, is that although power factor swings
do not substantially change voltage stability and its associated margins margins, voltage magnitudes
are effected severely. In the case of increasing power factor (due to dynamic reactive compensation
or load changes), voltage my stay relatively constant while variance shifts dramatically. For this
reason, real time stability monitoring using bus voltage mean values will not be nearly as successful
as relying on the stability information encoded in the variance of the bus voltage. If loads do not
change exactly as the operator predicts they will, mean values can be unreliable. This is a very
important example for the following reason. In chapter 3, we define a stability margin in terms of a
critical variance profile for a series of load buses in a load pocket. In doing so, the following question
could be asked: can this critical profile just use voltage mean instead of voltage variance? We show
that there is much system stability information encoded in the variance which the mean statistic,
even when leveraged analytically, does not contain. If power factor, tap settings, or some of form
of voltage regulation occurs without instantaneous operator knowledge, the system may appear to
be stable based on mean measurements, while in fact it may not be. The variance of the voltage,
however, provides useful information about proximity to voltage collapse even when voltage mean

is not helpful.

1.2.11 Quantifying Load Noise with First and Second Order Delta Meth-

ods

As given by (1.53), we can quantify the bus voltage variance of a load bus if we have (1) an analytical
expression for bus voltage magnitude as a function of load and (2) a value for load noise variance.
The load noise may be an unknown parameter, so we must consider how it can be quantified. We
present two ways for doing so. Assuming a PMU is able to measure the voltages and currents of loads
connected to bus 4, we can compute the load noise variance directly with (1.55). For clarity,V;(¢)

and Iy, (t) are the current and voltage serving the load at bus ¢ at time ¢, and pp,, is the mean load
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value.

T
ok, =Y (R{VIOIE, ()} — ppy)” (1.55)

This attempt represents a straightforward method for quantifying load noise. If we assume the bus
voltage variance is known at a particular bus, though, we may invert the delta method and solve for
load noise. Of course, the current model we are using assumes a two bus system with fixed generator
voltage at the “from” bus. Rarely would such a situation arise, but we will still explore this method,

as it can be generalized into a more realistic context. We start by inverting the delta method.

2
2 JVtr

UPD ~
dVy
dPp

2
E[PD]>

Since this expression is based on the linearization of (?7?), we consider if the accuracy of the load

(1.56)

variance calculation changes significantly when we incorporate the third term of the Taylor Series. A
higher order (second order) Taylor Series approximation can be employed. This derivation outlined
in Appendix D. Using the defined variables ¢, co, and c3, the final expression is given by (1.57).

— ((32) + (62)2 — 46162

2 = 1.57

In order test the validity of this expression, a simple 2 bus system is simulated in the MATLAB tool-
box PSAT. For a variety of load levels, an analytical solver (see Section 3.2) was used to compute the
full covariance matrix for the entire system. After each solve, the expected mean and variance of the
bus voltage and load demand are computed. In Figure (1.18), three quantities are contrasted: first
order delta method load variance estimation, second order delta method load variance estimation,

and expected load variance (according to the model we use to inject load noise).
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Figure 1.18: Load Noise Quantification. The top red line is the first order delta method estimation,
the middle blue line is the second order delta method estimation (see equation (1.57)), and the
bottom black line is the true load variance.

As can be seen in Figure 1.18, the first and second order delta methods yield almost identical
approximations (right up to just before the bifurcation). A second order approximation, therefore,

will not be used in any of the statistical calculations moving forward.

1.3 Critical Slowing Down

Across a variety of complex systems, there is increasing evidence that indicators of looming critical
transitions are concealed in the statistics of state variable time series data [37]. This fact has been
evidenced in many complex systems, including ecological networks, financial markets, the human
brain, and power systems [37, 18]. Researchers have even found that human depression onset can
be predicted by these same statistical properties [41]. Termed Critical Slowing Down (CSD) in
the statistical physics literature [44], this phenomena is most heavily evidenced through elevated
variance and autocorrelation [10]. When stressed, systems experiencing CSD require longer periods
to recover from stochastic perturbations.

Real power systems are burdened with stochastic loads and an increasing level of renewable
energy penetration. Consequently, researchers have begun to quantify the presence of CSD in large
scale power system networks. Strong connections have been drawn between bifurcation theory and
the elevation of certain statistics in voltage and current time series data [17, 19, 20, 18, 31, 9]. When
approaching a transition, reference [9] has quantified increases in variance and autocorrelation in bus

voltage. Similarly, reference [31] computes the power system state vector auto-correlation function to
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gauge collapse probability. Finally, variance and autocorrelation are measured in an unstable power
system in [18] across many state variables. The results indicate that variance of bus voltages and
autocorrelation of line currents show the most useful signals of CSD. Current angles, voltage angles,
generator rotor angles, and generator speeds did not yield strong CSD signs capable of indicating
proximity to a bifurcation. Although many are useful indicators, not all variables in a complex
system exhibit CSD sufficiently early enough to be useful EWSs [6]. For instance, reference [18]
destabilized a simulated power system by over stressing all load buses. Signals were then collected
from many nodes in this system, and certain nodes conclusively did not show early and strong CSD
warning signs.

In order to estimate the time series statistics associated with an arbitrarily sized power system
approaching a critical transition, the work completed in [18] is of particular interest. In this work,
Ghanavati et al. develop and validate a semi-analytical method for calculating the state variable
covariance matrix by solving the continuous Lyapunov equation for a dynamically modeled and
stochastically forced power system. A series of linear transformations can be applied to the state
variable covariance matrix in order to generate the algebraic covariance and autocorrelation matrices.
From such calculations, the statistics associated with voltage and current phase and magnitude across

all buses may be estimated.

1.4 Continuation Power Flow and the Holomorphically Em-

bedded Load Flow Method

One classic approach to safeguarding a system from voltage instability comes through solving the
Continuation Power Flow (CPF) problem. As clearly outlined in the seminal paper [1], CPF involves
assigning a series of loading rates and power factor parameters to loads at PQ buses and generation
rates (or participation factors) to the active power generation at PV buses. An iterative approach,
based on a modified Newton-Raphson power flow solver, is used to draw the nose curves of system.
In order to compute the critical bus voltage variances associated with a system approaching the loss
of LTVS, we use a version of CPF which is analytically computed via the Holomorphic Embedded
Load Flow Method (HELM).

As introduced in [40], iterative numerical solver techniques such as Gauss-Seidel and Newton-

Raphson (NR) encounter a range of numerical issues when employed to solve a series of nonlinear
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power flow equations. Unexpected divergence and undesired (low voltage) solutions are two common
examples which are especially problematic when a power system is close to a saddle node bifurcation
(as the low voltage solution and the high voltage solution become numerically similar). HELM
is founded in complex analysis, and it was first developed in order to overcome these numerical
difficulties. Based on how the germ of power series expressions are initialized, HELM will always
compute the desired, high voltage power flow solution, and it will never fail to compute this solution
if it exists [33]. Since HELM embeds a series of power balance equations into a holomorphic context,
it uses a recursive, rather than an iterative, method for solving the power flow problem. No Jacobian
matrix is needed to iterate towards a solution, so its speed is comparable to that of fast decoupled
power flow methods [40].

Work done in section 5 of [39] provides an important foundation for how HELM can be used to
solve for the static stability margins of a power system. In [39], it is shown how the holomorphic
parameter s can be extrapolated in order to scale the loads in a system. After generating the
holomorphic complex voltage functions, two strategies are introduced which approximately compute
the maximum power transfer point of the system. The first, more exact, strategy tracks the mismatch
of the known and the computed power injections of the system as s is increased. A bifurcation occurs
when the mismatch suddenly becomes numerically significant (the holomorphic equations become
invalid). The second strategy computes the zeros of the numerator of the Padé approximant for all
of the holomorphic voltage functions. Although less accurate, this strategy is still shown to have
less than a 1% error when implemented on a four bus system (assuming a sufficiently large number
of recursive terms). This CPF method of increasing s, as introduced in [39], scales all loads at
uniform rates, and it does not account for more than one single generator bus (the swing bus) in
the system. As will be shown, we have derived a set of holomorphically embedded power balance
equations which allow for the insertion of multiple voltage controlled buses and make room for the
scaling of individual loads at different loading rates. This allows us to draw the PV nose curve
very quickly and to exactly determine the bifurcation point of the system without any iterations or

recursions.
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1.5 Forward

1.5.1 Thesis Outline

In the preceding sections, we have thoroughly outlined the problems associated with of gauging and
maintaining Long Term Voltage Stability. In the following two chapters, we leverage our results and
conclusions from this chapter in order to present a series of tools and methods for improving the
LTVS of a system. In Chapter 4, we present a summary of our results and conclusions. Finally, we

end by expressing several ideas for future work on these topics.

1.5.2 Key Innovations

The voltage collapse mitigation efforts of Chapter 3 focus on several key innovations. The first treats
the holomorphic parameter s as a slowly varying stochastic variable (random walk) which scales load.
Critical loading thresholds, or thresholds which the value of s should not surpass during its random
walk, are identified through using an application of first passage processes. Finally, a full order
dynamical system model is used to analytically calculate the algebraic variable covariance matrix of
the system (given a fast acting stochastic excitation from load noise). Once the controller has taken
action, we use a dynamical simulation with fast stochastic noise injections (an Ornstein-Uhlenbeck
process) in order to validate the dynamical oscillatory, rotor and voltage stability of the system.
We thus couple static algebraic voltage collapse analysis through HELM, first passage probability,
statistical estimation (based on analysis of a full order system model) and dynamical simulation in

order to develop and validate our controllers.
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Chapter 2

Spectral Analysis of the Reduced

Power Flow Jacobian

2.1 Introduction

As detailed in Chapter 1, prior research has shown that spectral decomposition of the reduced power
flow Jacobian (RPFJ) can yield participation factors that describe the extent to which particular
buses contribute to particular spectral components of a power system. Research has also shown that
both variance and autocorrelation of time series voltage data tend to increase as a power system
with stochastically fluctuating loads approaches certain critical transitions. This chapter presents
evidence suggesting that a system’s participation factors predict the relative bus voltage variance
values for all nodes in a system. As a result, these participation factors can be used to filter, weight,
and combine real time PMU data from various locations dispersed throughout a power network
in order to develop coherent measures of global voltage stability. This chapter does not seek to
define these metrics; instead, we present a tool (spectral analysis of the RPFJ) which can be used
to do so in future work. This paper first describes the method of computing the participation
factors. Next, two potential uses of the participation factors are given: (1) predicting the relative
bus voltage variance magnitudes, and (2) locating generators at which the autocorrelation of voltage
measurements clearly indicate proximity to critical transitions. The methods are tested using both

analytical and numerical results from a dynamic model of a 2383-bus test case.!

1Material in this chapter is duplicated from Identifying System- Wide FEarly Warning Signs of Instability in Stochas-
tic Power Systems by S. Chevalier and P. Hines. Said paper was published at the 2016 IEEE PES General Meeting.
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2.2 Mathematical Methods for Spectral Analysis

This section presents a method for using spectral decomposition of the RPFJ to identify and weight
variables that will most clearly show evidence of CSD. (Further information on this spectral decom-
position method can be found in ).

The standard power flow Jacobian matrix, based on the linearization of steady state power flow
equations, is given by (2.1). For an n bus system, we assume this 2n by 2n matrix has been altered

such that is can iteratively solve the Newton-Raphson power flow problem.

AP Jre Jpv A0
AQ Jqo Jaqv AV

In order to perform V-Q sensitivity analysis (an important aspect of voltage stability analysis),
we assume that the incremental change in real power AP is equal to 0. In this way, we can study
how incremental changes in injected reactive power affect system voltages. Setting AP = 0 and

rearranging terms to remove A6, the expression for the reduced Jacobian is defined:
AQ = [Jqv — JqoJpgJpv] AV = [JR] AV (2.2)

Assuming we are dealing with a system which has a converging power flow solution (via the
Newton-Raphson method), the matrix Jz can be assumed non singular and written as the product
of its right eigenvector matrix R, its left eigenvector matrix L, and its diagonal eigenvalue matrix
A, such that:

Jr = RAL (2.3)

The left and right eigenvectors are orthonormalized such that, for the right eigenvector r; (column

vector) and the left eigenvector 1; (row vector), the Konecker delta function defines their relationship:

1 i=j
le‘i = (SjJ' = (24)

0 i#j

We begin by decomposing Jr using a simple similarity transform. The transform is substituted into
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AQ =
A1 0 0 11
0 X I
[ ry ro r, ] AV
0
0 0 A L,
1,1 T2 Tn,1 A1(l - AV)
1,2 T2.2 T'n,2 A2(12 - AV)
= (2.5)
Tim T2m  *°* Tnn An(ln - AV)

It becomes helpful to investigate how changing voltage affects the change in injected reactive power

of a single bus (AQ; for example). This is shown in (2.6).

AQI = 7"171)\1(11 . AV) + 7"271A2(12 N AV) + (26)

ot (ly, - AV)

In order to determine how the reactive power at bus n is affected by the voltage at only bus n,
we simply hold all other voltage magnitudes constant. If we choose n = 1, the voltage differential
vector becomes AV = [ AV; 0 --- 0 ]. The equation for reactive power differential changes
accordingly.

AQr = (Mriilia + deraalor + -+ Al 1) AV; (2.7)

At this point, we can define and incorporate the participation factors. The indices in the following
equation refer to the j*"* row and the i*" column of the right eigenvector matrix R and the i*" row

and the j* column of the left eigenvector matrix L.

pij = R;jiL;; (2.8)

Therefore, p; ; defines how j*" state is affected by the i‘" eigenvalue. Clearly, individual reactive
power states can be expressed as a superposition of eigenvalues of varying degrees of participa-

tion. If we compute the reactive power changes at each bus based on the voltage changes at each
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corresponding local bus, we obtain the following set of equations.

AQ1L = (Ap11+Aap21+ -+ Appni) AVY

AQz = (Mipr2 +Aapaa + -+ Apn2) AVa

AQy, = (Alpl,n + /\2p2,n + -+ /\npn,n) AV,

In these equations, a reactive power state is expressed as a superposition of eigenvalues. Con-
versely, we can also express each eigenvalue as a superposition of different states. The reason why
such an expression is useful is shown through (2.12). Recognizing that R = L~!, the following

manipulations may be made.

AQ =
A0 0 [ I;
0 A : L
[ ry r rn } AV
0
0 0 A || In
I, A0 0 I ]
o 0 Ao : lo
AQ=| - AV
. : . O .
L, 0 - 0 A |||
Now, we can isolate a single eigenvalue (A, for example).
LAQ =\ 1AV (2.9)
LaAQL + 11 2AQ2 + -+ + 11 n AQy, = (2.10)

A (L AVL+ 1 2 AV + -+ 1 AV,

Clearly, the relationship between AQ and AV for the j** isolated state (holding all else constant)
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is given by the following expression.

ql,jAVj AVJ 1
= = — 2.11
@, AQ;  AQ; A 211)

This is true for all states of a given eigenvalue. Therefore, the spectral component which will have
the largest voltage variation for a given reactive power change will have the smallest eigenvalue. For
this reason, the participation factors of this eigenvalue will be of great interest to study. The j**
eigenvalue can be written as a summation of n unique states. In this way, (2.12) shows how each

state participates in the eigenvalue of a system.
Aj = Ajpitt Aipj2 + o+ Aipin (2.12)

There are many different ways to use the eigenvalues and eigenvectors of Jg. For instance, [14]
suggest using the smallest eigenvalue of Ji to gauge proximity to bifurcation. Such stability analysis,
though, is based solely on the decomposition of a model based static matrix and is highly limited in
nature, as outlined by M. Pal in the discussion section of [14]. Instead, we propose that Jr can be
leveraged as tool to interpret streams of PMU data. Detecting Critical Slowing Down in time series
data is a purely data driven stability assessment, but it can be difficult to understand which nodes
will show the strongest EWSs [18]. Therefore, the novel approach outlined in this chapter relies on

using static decomposition results to weight and interpret incoming dynamic data.

2.3 Uses of Participation Factors: Experimental Results

This section outlines how the derived participation factors can be used to interpret real time PMU
data. The system configuration and load noise assumptions are outlined in 2.3.1. 2.3.2 provides
evidence for the participation factor’s ability to predict relative variance strengths. Finally, 2.3.3

outlines how participation factors can be used to interpret autocorrelation signals.

2.3.1 Polish Test Case System Overview

In order to test our methods, we used analytically derived data from the 2383-bus dynamic Polish
test system. This network contains 327 four-variable synchronous generators. Each generator is

equipped with a three-variable turbine governor model for frequency control and a four-variable
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exciter model (AVR) for voltage regulation. There are 322 shunt loads (all connected to generator
buses) and 1503 active and reactive loads spread throughout the system. In order to push the
system towards voltage collapse, we employed a simple uniform loading of all loads (except for
those attached to generator buses). This method is justified in [24]. Half of the PQ bus loads are
modeled as voltage controlled loads, while the other half are modeled as frequency controlled loads.
Parameters controlling the voltage controlled loads are modeled after the Nordic Test System in [3],
while parameters controlling the frequency controlled loads are modeled after the 39 bus test system
described in [18].

The differential algebraic equations modeling the power system are given by:

x =1f(x,y) (2.13)

0=g(x,y,u) (2.14)

where f, g represent the differential and algebraic equations governing the system, x, y are the dif-
ferential and algebraic variables of these equations, and u represents the stochastic load fluctuations.

These load fluctuations u follow a mean-reverting Ornstein-Uhlenbeck process:

i=—-FEu+¢ (2.15)

where E is a diagonal matrix whose diagonal entries equal the inverse correlation times ¢_.l,. of
load fluctuations and £ is a vector of zero-mean independent Gaussian random variables. A further
description of our noise model can be found in Sec. II A of [18]. Also given in [18] is a method for
analytically computing the covariance and correlation matrices for all state and algebraic variables.
The method is shown to be highly accurate, and we have extended it to the 2383-bus Polish system.
After thorough testing, we found the analytically calculated covariance and correlation matrices
to be just as accurate on the large Polish system as they were on the small 39 bus system. The
data presented in the following two sections use the analytically calculated results (as opposed to
repeated, averaged dynamic simulation results).

In order to push the system towards a critical transition (voltage collapse), we set the system
loading factor b, ranging from b = 1 up to b = 1.92. This loading factor would increase all PQ loads

by a constant value (active power generation was increased by the same ratio). Voltage collapse

would occur when the load factor increased past b = 1.923.
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The concept of a limit-induced bifurcation is an important topic discussed in [27]. Power system
limits, such as reactive power generation limits, are an important aspect of stability analysis, but
for the Polish power system model, we have extended all limits such that the system can experience
maximum loadability without the occurrence of a Hopf or limit-induced bifurcation. This is certainly

a simplification, but it allows us to concentrate on the effects of pure voltage collapse.

2.3.2 Evidence for Bus Voltage Variance Prediction

As indicated by (2.11), the smallest eigenvalue of Jg corresponds to the spectral component which
will yield the largest voltage variation for a given reactive power variation. When the participation
factors corresponding to the smallest eigenvalue are plotted, they are shown to directly predict the
relative bus voltage variance strengths. Fig. 2.1 shows two plots. The top plot corresponds to the
participation factors for buses 200 through 500, and the bottom plot shows the true bus voltage
variance, derived analytically, for buses 200 through 500. The remaining system buses are left out
for the sake of clarity. Despite the fact that the participation factors are completely blind to the

dynamics of the system, they are still quite successful at predicting the relative variance strengths.
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Figure 2.1: Shown are test results for buses 200 through 500 from the loaded 2383 bus system.
Bus voltage variances at each node (panel (b)) are shown to have their relative magnitudes directly
predicted by the participation factors of the smallest eigenvalue of the RPFJ (panel (a)).

As shown in reference [17], increasing voltage variance is due to buses which are operating lower
on the PV curve. Therefore, participation factors of the smallest eigenvalue also identify the node
voltages which, as the system is overloaded, begin to diverge away from 1 per unit in magnitude
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most rapidly and drift towards 0. These are the nodes which are primarily responsible for non
convergent power flow equations. Interestingly, as PQ buses in the system are increasingly loaded,
the recalculated participation factors do not change drastically (for a uniform loading condition).
This is equivalent to saying that the spectral components do not change significantly. This is a useful
result, since real power flow models are only updated every few minutes.

As indicted previously, participation factors of the most unstable nodes serve as values indicating
the relative bus voltage variance strengths. Therefore, as the system is increasingly loaded, the most
unstable nodes will begin to have larger and larger participation factors as their relative variance
strengths grow relative to other, more stable nodes. Fig. 2.2 shows an example of this for the 2383
bus system. As the system is loaded, the relative strength of the most unstable bus’ participation
increases almost linearly, but when the critical transition approaches, the participation begins to

climb more steeply.
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Figure 2.2: Depicted are the evolutions of three different nodal participation factors. As the system
is increasingly loaded (right up to bifurcation), bus 466 (the most unstable bus) begins to see a
sharp increase in participation to the instability. Bus 240 (the 5th most unstable bus) sees a very
slight increase, while bus 218 (the 10th most unstable bus) begins to see a decrease.
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2.3.3 Evidence for Locating Generators with Elevated Voltage Autocor-

relation

CSD theory predicts that signals from a system approaching a critical transition will begin to show
high auto-correlation (R(At)). This can be due to the system’s reduced ability to respond to high
frequency fluctuations [10], but the system also beings to return to the equilibrium state more slowly
after perturbations [19]. In a power system, the system-wide autocorrelation increases are based in
the increasingly unstable generator dynamics. These dynamics are driven by the load variances
(since this is where the noise is being injected).

In Figure 2.1, there are clearly certain nodes which are experiencing relatively extreme variance
increases. Despite the wide ranging indices, these nodes are all in fact separated by only a select
few transmission lines. For this reason, the buses with indices between 220 and 466 which are
showing the extremely high variance in fact represent a very weak load pocket. The participation
factors are therefore very useful for identifying load pockets. Many of the buses connected to this
pocket show high variance, and they are therefore driving the autocorrelation of the most proximal
generators. By identifying the distance from the center of the load pocket to the closest generators,
the autocorrelation of the output signals (voltage and current) of close generators can be scrutinized.

As explained in the caption of Figure 2.3, the traces of the plot represent the average voltage
autocorrelation of different groups of generators for varying load levels. The autocorrelation uses a
time lag of At = 0.2s, and the rational for this choice can be found in [19]. As shown is Fig. 2.1, the
generators are grouped (and identified) by their proximity to the load pocket. Clearly, the closest

generators show the largest average autocorrelation statistics. This is a very useful result.
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Figure 2.3: The four traces on this plot correspond to the voltage magnitude autocorrelation for
different groups of generators over varying load levels. The top trace is all generators that exist
between 6 and 9 transmission lines from the load pocket. The second group is all generators that
exist between 10 and 15 transmission lines from the load pocket. The third group is all generators
that exist between 16 and 20 transmission lines from the load pocket. And the fourth group is all
generators that exist between 21 and 23 transmission lines from the load pocket.

2.4 Conclusions

This chapter presents evidence that participation factors from a spectral decomposition of the RPFJ
can be used to design methods for combining sychrophasor measurements to produce system-wide
indicators of instability in power systems. This method uses model-based information from the power
flow Jacobian, which can be updated every few minutes through the SCADA network, along with
high sample-rate voltage magnitude measurements, which can be collected from synchronized phasor
measurement systems deployed throughout the system. We have shown that this combination of
power flow results and dynamic real time data analysis can be used to develop system-wide stability

metrics.
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Chapter 3

Using PMU Statistics to Reduce

the Probability of Voltage Collapse

3.1 Introduction

With the continued deployment of PMUs, high sample rate data is dramatically increasing the
real time observability of power grids. As presented in Chapter 1, prior research has shown that
information regarding the stability of the network is present in the statistics of this real time data.
In this chapter, we show that bus voltage variance can be used as a stability margin control signal
in order to reduce the probability of voltage collapse as load builds up. To accomplish this task,
we manipulate the Holomorphic Embedded Load Flow Method (HELM) in order to apply it to
the Continuation Power Flow (CPF) problem for a fast, analytical way of determining critical
loading conditions. We then leverage a low order dynamical system model to compute the algebraic
variable covariance matrix of a critically loaded system. Raw statistical data in a highly observable
load pocket is monitored and tested against the analytically computed critical variances from the
covariance matrix. Thus, we employ a data driven method for determining when the system has
reached a stability limit. We then adapt HELM to build a reactive power controller which pushes
the stability of the system back to an acceptable stability margin. The following sections present the

methods used to build this controller along with the test results from its simulated implementation.
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3.2 Analytically Computing the Algebraic Variable Covari-
ance Matrices

To understand when a measured PMU statistic warrants control action, the operator should have
some sort of predicted thresholds which should not be passed. This section outlines a method for

leveraging a full DAE system model in order to analytically compute threshold statistics.

3.2.1 Power System Model Overview

In order to simulate and study an N bus power system, we rely on the standard generator and power
flow DAE models used across industry and academia. Conveniently, these models are outlined in
Chapters 17 and 18 of [28]. Based on the conventions presented in these chapters, we rely on a type 4
Synchronous Generator (SG) model, a type 1 Turbine Governor (T'G) model, and type 2 Automatic
Voltage Regulator (AVR) model. As reviewed in Section 2.3.1, the compact set of DAEs modeling

the power systems we are simulating are given by equations (3.1) and (3.2).
x =f(x,y) (3.1)

0= g(X, Y, ll) (32)

where f, g represent the differential and algebraic equations governing the system, x, y are the dif-
ferential and algebraic variables of these equations, and u represents the stochastic load fluctuations.

An overview of the differential and algebraic equations which comprise f, g is given in Appendix E.

3.2.2 State Variable Covariance Matrix

The process for deriving the approximate covariance matrix for this system is outlined in [18], but
we derive it in more detail here. We begin by linearizing (2.14) using the first two terms of the
multivariate Taylor Series Expansion.

og og og

0=g(x,y,u) + =2Ax+ —=Ay+ —Au (3.3)
xoyomy 0% oy Ju

Because we are linearizing about the solution (root), the first term of (3.3) is zero. We can rearrange

the expression and solve for Ay. For notation’s sake, we can also rewrite the partial derivatives with
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the shorthand notation of gy, gy, and gu.
—gy Ay = gxAX + gulAu (3.4)
Now, Ay can be solved for explicitly, and the RHS of (3.4) can be written as an inner product.

Ax

Ny = [ -g,'ex —g; '8 ] N (3.5)
u

We can also linearize (2.13) using the first two terms of the multivariate Taylor Series.

x =f(x,y) + £ Ax + f, Ay (3.6)

X0,Y0

We can eliminate Ay by substituting in the expression of (3.5). We can also define A% on the

LHS of (3.6) by subtracting f(x,y) on both sides (this serves as the incremental change of the

X0,Y0

derivative term).

. Lx 1 1 Ax
A% = f Ax + £y [ —g; g —g;'gu } R [ fo—fyg, ‘e —fyg, 'gu (3.7)
u

A similar linearization process can be performed on (2.15).

= (—FEu| +I1¢)+(—Fu+I,£)Au=(—Fu

uo

+1,8) — EAu (3.8)

uo

Once again, we can define A as the change, or sensitivity, of the derivative, and it can be calculated

by pulling Eu| onto the LHS of (3.8). Finally, we arrive at an expression for Au.

up

At = —EAu+ I,€ (3.9)

We can now combine (3.7) and (3.9) into one single equation which relates the sensitivity of the

derivatives to the sensitivity of the original variables.

Ax f, —foglgx —fyg! Ax 0
_ vBy Bx ThyBy Su + ¢ (3.10)
At 0 —E Au I,
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T
where n is the length of u. By defining a new variable z = [ Ax  Au } and renaming the

matrices, we can further simplify (3.10).

7= Az + B¢ (3.11)

The form of (3.11) can be exploited to (iteratively) solve for the covariance matrix of the variables
in z. The Lyapunov equation can be solved, where X is the covariance matrix and A and B are

defined in (3.11). This relationship is given in [15].

AX +XAT +BBT =0 (3.12)
4
Aok +02A" = -BBT (3.13)

3.2.3 Algebraic Covariance Matrix

The expression in (3.13) will yield the covariance matrix for z, but the algebraic covariance matrix

2

y» We must exploit a transformation property of

is still unknown. In order to analytically solve for o
covariance matrices. Consider two vectors vy and vy which are related to each other through the

linear transformation defined by matrix T.
Vo = TV1

If the covariance matrix of vy exists and is known, then the covariance matrix of v, can be computed
via (3.14).
Oy, = TO‘VITT (3.14)

2

We therefore must use the transformation found in (3.5) in order to transform o into o3.

T

2 _ _ 2 _ _
0y = | —8,'8x —8y'8u }Uz { —-g,'gx —8,'8u (3.15)
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3.2.4 Autocorrelation and Cross-Correlation Matrices

With ¢2 and 032, known, equations from [15] can be used to solve for correlations. For instance, the

full autocorrelation matrix is given by (3.16).
E[z(t)z"(s)] = e 4122 At =(t—s) (3.16)

By choosing a single variable and dividing by its variance, its normalized autocorrelation function
can be calculated.

R.,(At) = E [z(t)z] (s)] [o? (3.17)

7 Z4
As is done in (3.15), the correlation matrix for z can be transformed into the correlation matrix
from just the algebraic variables.

.
Ely®y ()] = | —g;'ex —8y'gu ]E [2(t)z" (s)] [ -g;'gx —8;'8u (3.18)

3.2.5 Extension to the Line Current Covariance Matrix

Expressions for the covariance of certain algebraic variables are derived in the previous subsection.
These include V and 8, but they do not include I (current magnitudes and phases). The derivation

of the line current covariance matrix is found in Appendix F.

3.2.6 Load Noise Model

In modeling this dynamic power system, the noise applied to the loads is governed by a given by
(2.15). For a given base load, we assume stochastic noise is injected into the loads in the following
way:

P(t) = Po(1 + u(t)) (3.19)

Q(t) = Qo(1 +u(t)) (3.20)

where u is a vector of random load fluctuations. We model these load fluctuations as an Ornstein-
Uhlenbeck process (stationary, Gaussian, and Markovian). Since this is a mean reverting Gaussian

process, the loads are constantly changing, but over time, the following observation is true:

E[P(t)] = Py (3.21)



E[Q()] = Qo (3.22)

That is, the expected values of the loads over time remain fixed at the base load value. The derivative

(or instantaneous change) in the fluctuations is given below.

= —FEu+I,¢ (3.23)

where I, is simply the n by n identity matrix and F is a diagonal matrix of inverse time correlations.

o, 0 0
0 toom,

E= (3.24)

0

L O e O t‘;)lrrn .
We define the inverse time correlations like so: v = % Also,£ is a vector of independent Gaussian
random variables. Each individual element &; has the following properties:

E[&G(t)] =0 (3.25)
E[&(#)E(s)] = 5ij(f§51(t —5) (3.26)

Clearly, each element &; is zero mean, and it is uncorrelated with itself and with all other realizations
at all other times. The intensity of the noise is given by the variance value 0‘2. This can be stated

in the following manner:

(€i(t1)&i(t2)) = 020(t1 — t2) (3.27)

Based on these assumptions, we can compute the (non-normalized) auto-correlation of the load

fluctuations.

(wi(t + Dt)uy(t)) = gée—”“ (3.28)

If At =0, the equation directly computes the variance of the load fluctuations.

o2 = & (3.29)

49



3.3 Adapting HELM to Solve CPF

As explained in Chapter 1, recent literature has leveraged tools from the field of complex analysis in
order to develop non-iterative techniques to solve the power flow problem. As shown in the literature

[4, 40, 39, 33|, the Holomorphic Embedded Load Flow Method (HELM) accomplishes this task.

Functions of complex variables that are complex differentiable everywhere in a neighbor-
hood around a point are said to be holomorphic about that point. Holomorphic functions
can be uniquely expressed using a convergent Taylor series in the neighborhood of the

point. (Subramanian 50)

Because of these properties, [42] indicates that a holomorphic function is in fact equal to its own
(infinite) Taylor Series. The general process for solving the power flow problem, as outlined by each

of these sources, has approximately five basic steps:

1. Embed the power flow (or power balance) equations in the complex plane, where the unknown

complex voltages are converted into complex holomorphic functions.

2. Use the germ solution (all generation and loading is set to 0) along with a recursive technique

in order to solve for the unknown power series coefficients of the holomorphic functions.
3. Transform the fully characterized holomorphic functions into Padé approximants.

4. Solve for the unknown complex voltage phasors by evaluating the Padé approximants. This is
accomplished through setting the holomorphic parameter (which is typically s in the literature)

equal to 1 and performing simple algebra.

5. Once the system-wide complex voltages are known, use the standard power flow equations to

compute the power injections at each bus.

Although mathematically dense, the process itself is fairly straightforward yet highly rigorous. In
order to explain how we manipulate HELM to solve the CPF problem, we first briefly review how
the five steps listed above are used to solve the power flow problem. The entire procedure for using

HELM to solve power flow is outlined in [39].

3.3.1 Using HELM to Solve the Power Flow Problem

In order to solve the power flow problem, we must develop appropriate power balance equations and

then embed them with a complex parameter. We do this below for the PQ bus, the swing bus, and
50



the PV bus.

3.3.1.1 Load Bus Model

For all load buses in a system with N buses, the active and reactive power injections are known.

Therefore, we begin by formulating the complex current injection at these buses.

N

L= YiyVi i€PQ (3.30)
k=1

We define the relationship between the current phasor, the bus voltage phasor, and the complex

power injection as follows.

Vill)" =8 = L= (%) (3.31)
%
N *
I=Y YiVe = o (3.32)
k=1 i

The shunt elements in the diagonal matrix are removed, and a transformed Y bus matrix Y is
defined. We place these shunts into a new matrix Yg, where the sum of shunts connecting bus ¢ and

ground are equal to y;.

y o) Yemvi =g (3.33)

0
Yij  i#7
yi 1=7
Yo, =4 (3.34)
0 i#j

Therefore, we can reconstruct the original Y bus matrix with Y and Ys.
Y =Y 4 Ys (3.35)

Now we rewrite the current injection equation.

N

o , K
= Vi Vi) + Ys, Vi = —- (3.36)
oy b sy
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N *
Z = S - Ys,,V; (3.37)

1
The voltage functions can now be embedded with a complex parameter s. Notice that the complex

conjugate of s is taken in the denominator of 3.38. This is because for a holomorphic function,

(V(s))" = V*(s").

*

Z Y V(s VS;S) —sYsVi(s) (3.38)

In general, we express the voltage V(s) as a function of the complex parameter s according to the

following power series.
V(s)=VI[0]+ V[1]s + V[2]s> + V[3 —Z Vin (3.39)

The coefficients V[n] are undetermined complex numbers. In (3.38), if s = 1 is applied, we obtain
the desried current injection equations. If s = 0, no load and no shunts are applied in the system,

so the solution is trivial. This is known as the “germ” solution.

3.3.1.2 Swing Bus Model

At the swing bus generator, the voltage is held constant, and the phase is used as a reference.

V., = Vel

The complex power injection is a free variable. We transform the swing bus voltage equation into a

holomorphic function.

3.3.1.3 Generator Bus Model

In [39], Subramanian introduces two models for generator buses (model T and model IT), but both
models are based in the same equations and yield virtually identical results. Therefore, only model

I is presented below. We start by stating the complex power injection equation.
S, =ViIr =V, Z Ve (3.40)
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At PV buses, the reactive power injection and the phase angle are both unknown. The voltage of

the generator and the real power injection are both known though.
N
P=R(S) =% (1/;- > Y;}V,:) i€ PV (3.41)
k=1

Vil=V® iePV (3.42)
We now rewrite the current injection equation with embedded complex parameter s:

sP; — jQi(s)

V) —sYs,, Vi(s) (3.43)

N
Z Y, 1 Vi(s) =
k=1

Of course, for a PV bus, Q;(s) is an additional (unknown) free variable. This variable is ultimately
constrained by the set point voltage of the bus. The PV bus voltage can be embedded in the

parameter s via the following chosen convention:
Vi)V (s") = 145 ([Vi7* — 1) (3.44)
At s = 1, we have simply the following.

V)V (1) = [V (3.45)

3.3.1.4 Model Summary

We have now formulated all necessary equations. Table 3.1 presents a summary. A similar version

of this table may be found in [39)].

’ \ Original Power Flow Equations \ Embedded Equations ‘
. N 5% N S*
i€ PQ > YV = o5 Y, Vi(s) = syisy — sYsVi(s)
k=1 ° k=1 i
i€r V; = V,el? Vi(s) =14+ (V. —1)s
N N ’ sPi—jQq(s)
o - SRV 1/2 Vks:ﬂi‘;:stS”Vis
eV P=% (v; k; Yl,ka> k; KVi(s) = =755 . Vi(s)
Vil = VP Vi)V (%) = 1+ (V7P — 1)

Table 3.1: HELM Model Summary
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3.3.1.5 Using the Derived Model to Solve Power Flow

The method for iteratively computing the unknown power series coefficients, which involves splitting
each holomorphic function into real and imaginary parts, shall not be reproduced here, as it is dense
and can be found in the literature. A similar method, which solves the CPF problem, shall be
presented below.

At each bus 4, once a sufficient (based on error tolerance) number of power series coefficients
are known, Vi(s) = R{Vi(s)} + jS{Vi(s)} can be quantified. Next, the holomorphic function at
each bus can be converted into a Padé approximant. A Padé approximant is way for rationally
approximating (by way of a rational function) a power series. If the Padé approximants converge at
s = 1, then the system has a valid, high voltage solution. If they do not converge for any bus (all
buses should diverge simultaneously), then the system in beyond the point of MPTP or the voltage
collapse condition [40]. Assuming we have solved for N, power series coefficients, we generate A[n]
and Bln] in (3.46) to approximate the power series function. Although not necessary, we stipulate

that N, must be odd.

No—1 22: Aln] (s™)
i - Bln] ()

There are a variety of methods for determining the Padé approximants, as outlined in [39]. One of
the most common methods is the so called direct (or matrix) method, and it was originally developed
by Henri Padé. In order to show how to utilize this method, we explicitly show how it is developed.

Initially, we multiply (3.46) by the denominator on the RHS. Again, we assume that N. > 1 is odd.

BIO+ Bls + -+ B{oo & — 1)1 4 e Lt
(V0] + V[1]s+ -+ V[Ne — 2]s" 2 + V[N, — 1]sV ] (3.47)
— A+ AL]s + - AL

2

Next, we multiply the expression out and group coefficients attached to like values of sT5H o
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sNe=1 as the coefficients attached to these power of s are equal to 0 on the RHS of (3.47).

BV + -+ BOUV[RF + BOV[EGE +1] = 0

B[Rl [Ne=d] ... 4 B[1]V[N, — 2] + B[0]V [N, — 1]

I
o

We have thus formulated a linear system of equations. There are a multitude of solutions to this
problem, as it is formulated, so we choose to fix B[0] = 1. Now we have a linear system equation

Az = b which may be solved by inverting matrix A.

V(1] vty | [ ppe V[Nt )
: ' - : (3.48)
V[N VN — 2] B[] V[N — 1]
\(}
B[] V(1] vty | [ vt g
S T s (3.49)
B[1] VIR - VINe—2] V[Ne — 1]

2

Once this has been done, B[1] through B[Ne=1] are known. Solving for coefficients A[0] through

A[%] is then trivial.

Aln) =3 VIk]Bln — k] (3.50)
k=0

The phasor voltage at bus ¢ can then be calculated by evaluating the approximant at s = 1.

Z

—1
2

2. Aln](s™)

|s=1 (3.51)

Nl
Il

z|3

=

S Bl ()

Using the power flow equations of (1.16) and (1.17) then lets us calculate the complex power injec-
tions and fully solve the power flow problem. This concludes the overview of the five step process

presented at the beginning of this section.
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3.3.2 CPF via HELM
3.3.2.1 Using the Holomorphic Parameter s to Scale Loads

In [39], a method for scaling loads by increasing the holomorphic parameter s in introduced. As
loads are scaled, the holomorphic functions directly compute the complex bus voltages at all buses
in the system. Indeed, this is an extremely fast way to perform CPF and draw the nose curves
for the system. In order to implement this method, the method for solving the base case power
flow is no different than the method presented above, and only minor manipulations are made to
the equations in Table 3.1. As it stands, though, the method has two major drawbacks. First, it
scales all loads in the system uniformly (at the same rate). Loads cannot decrease, remain static or
increase at variable rates. Second, the method does not account for multiple generator buses. As
presented, the method relies on a single generator (swing) bus which is powering the entire system.

In order to solve these problems, we derive a new method for scaling loads from some base case
solution. It allows for variable scaling rates in any (or no) direction, and it allows from multiple
generators to be dispersed throughout the system. As loading (and losses) increase, generator active
and reactive power injections must change too. In the conventional CPF problem, generation rates
(or participation factors) are assigned to different generators to pick up excess load. This is not the
approach we took. For mathematical simplicity, we instead solve the base case power flow solution
and then fix the generator voltage phase angle. In this way, the complex voltage of the generator
is fully characterized. As load increases at the load buses, the generators respond in the following
way: generation increases quasi-proportionally to the “electrical distance” between the generator and
the load. Electrically proximal generators respond with the most power generation increase while
electrically distant generators respond with much smaller power generation increases. Although this
is an undesirable assumption for a variety of CPF uses, our main focus of this chapter is to track
the voltage statistics of a small load pocket with poor LTVS. In this situation, the power is fed from
generators outside of the load pocket. If the rest of the system is voltage stable, we hypothesize
that where the power is the generated has a very small impact on the point of voltage collapse for
an isolated load pocket. This shall be discussed further below. For discussion on adding generator
participation factors into this problem, see the future work section of Chapter 4.

We now derive how this method may be implemented, which we refer to as “CPF via HELM™!.

We start by noting that either the method presented above or the traditional Newton-Raphson

IMuch of the following derivation is novel, while some pieces have been borrowed from Chapter 4 of [39]

56



technique must be used to solve for the base case power flow solution. It does not matter which
method is used to solve for the base case, since they will compute the same solution (assuming we

are sufficiently far from a SN bifurcation).

3.3.2.2 CPF via HELM: PV and Swing Bus Model

The holomorphic voltage functions at the swing bus and at the generator buses are not a function
of the holomorphic parameter s. We assume these voltages remain constant regardless of load

increase. Because of this assumption, we clearly are not considering reactive power limitations on
generators. For discussion on generator reactive power limitations, see the discussion in the future

work section of Chapter 4. Table 3.2 summarizes the chosen embedded equations.

’ \ Original Power Flow Equations \ Embedded Equations ‘

iEr Vi = Vie? Vi(s) =V,
N
PPV P=%R (Vi k; Yi,ka) Vi(s) = Vielt
Vil = Vi

Table 3.2: PV and Swing Bus Model Summary for CPF Application

Since the phasor voltages at these buses are constant and known, we can define the power series
coefficients directly.
Viln] = Vel n =0

Vi(s) = ie {PVUr} (3.52)
Vil = 0 n>0

3.3.2.3 CPF via HELM: PQ Bus Model

We now set out to alter the PQ bus equations given in 3.1 in the following way: loading rates are
added to each load such that HELM can handle loads which increase at variable rates. Also, we use
the Y bus matrix Y and disregard Y and Yg. These matrices are useful for determining the germ
solution of the system which is necessary to solve power flow, but we assume we already have the
base case power flow solution (in one way or another).

N . o
S YiaVils) = St skSE L pg (3.53)
= Vi (s*)
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In this case, the parameter k; is a loading rate parameter, and it can be positive, negative, or 0. It
corresponds the rate at which a bus will be loaded. If k; = 0, the i*® load buses will not change its
loading at all throughout the CPF. It would be trivial to add a second loading rate parameter in
order to scale the active and reactive power components of the load separately, but we focus on the
constant power factor case here. The other non-zero values of k are relative, specifying how quickly
loads change relative to one another. The method of solving for the n” unknown bus voltage power

series coeflicients is outlined in Appendix G.

3.3.2.4 Choosing the Number of Recursive Routines N,

When choosing the number of recursive routines necessary to develop an accurate power series
expression, two considerations must be made. The first is the accuracy of the power series. In
general, as more terms are added to the power series, the holomorphic voltage function of (3.39)

becomes more accurate. This, in theory, drives the mismatch vector to 0 as N, increases.

N
P; —V; > Vi [Gik cos(0ix) + Bix Sin(eikﬂ’

AP;
PQ Bus Mismatch Vector = = kSt i€ PQ
AQ: ‘Ql — Vi Z Vk [le sin(&ik) — Bik COS(@ik)}’
k=1

As noted in [39] though, as the number of power series terms increase, the condition of the matrix in
(3.48), the so called Padé matrix, begins to increase (especially if the higher order power series terms
are tending towards 0). This matrix must be inverted in order to solve for the Padé approximants,
so the accuracy of these approximants decreases as the condition of the Padé matrix increases.
Therefore, when choosing the value of N, there is a tradeoff between power series accuracy and

Padé matrix condition which must be considered.

3.3.2.5 Using a Holomorphic Function to Solve for a Critical Voltage

Now that the Continuation Power Flow method has been derived using HELM, the holomorphic
functions can be used to predict the loading levels which will yield some critically low voltage (or

any desired voltage) V.. This useful derivation is given in Appendix H.
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3.3.2.6 Using CPF via HELM to Estimate Voltage Collapse Loading Conditions

After using (4.89) to solve for the holomorphic bus voltage functions (with a sufficiently high number
of power series terms), we can use the functions to directly calculate the system’s point of fold
bifurcation with a small degree of error (for a given loading scheme and loading rates). The functions
are implicitly embedded with the knowledge of when the system reaches voltage collapse, so we can
exploit this fact in order to determine the loading margin. We start by rewriting the factorized

numerator.

N1 No1
Z Aln] (s™) = H (s—r1) (3.54)
n=0

It can be shown that the system will approximately diverge when s reaches the smallest, positive
root of the numerator. We use this fact to estimate the loading margin of the system. Because
the roots are often complex (with R(r1) > S(r1)), there is a small amount of error associated with

this method. As the system approaches the bifurcation, though, the magnitude of this error shrinks

considerably.

3.3.2.7 Testing CPF via HELM on the IEEE 39 Bus System

In order to validate the CPF via HELM method derived above, we consider the IEEE 39 Bus Test

System shown in Figure (3.1).
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Figure 3.1: Topology of the IEEE 39 Bus System

We define the vector k which is length 39. The elements of this vector contain the respective
loading rates of the buses in the system. We set all elements of this vector equal to 0, except we
give the load at buses 3, 4, 7, and 8 a loading rate of 1, and we give the load at bus 20 a loading

rate of -0.2. These buses and rates are chosen simply to present a graphically clear example.

1 i€{3,4,7, 8}
ki =14 —0.2 i=20 (3.55)
0 otherwise

As a reminder, the loads of the system scale in the following way, where S is the base load at bus i.

S; = SY + sk;S? (3.56)

Accordingly, we run a base case power flow on the system, and then we calculate the bifurcation
point based on (3.54). When s = 2, the system collapses. This corresponds to the loads at buses 3,
4, 7, and 8 tripling while the load at bus 20 reduces by 20%. All other loads remain static. In this
example, we scale the holomorphic parameter s from 0 to 1.95 (just before voltage collapse) and

compute the complex voltages of the system using (3.46). The voltage magnitudes of the system
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are presented in Figure 3.2.
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Figure 3.2: Bus Voltage Magnitudes of the 39 Bus System as Computed by (3.46). Clearly, the
system is very close to reaching a state of static voltage collapse.

In order to visualize how loading rates affect the system as load is scaled, the active and reactive
power injection of the system, for each value of s, is plotted. These results are shown in Figure
(3.3). These injections are computed by the power flow equations (1.16) and (1.17) once (3.46) has
been used to solve for the complex voltages. In other words, these injections are purely based on

calculated voltage phasors and not on (3.56).
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Figure 3.3: Complex Power Injections for load and generator buses of the 39 bus system. In panels
(a) and (b), the black traces are the static loads (k; = 0), the red traces have a loading rate of 1, and
the blue trace has a loading rate of -0.2. In panels (c) and (d), the generator injections are shown.
Some of these injections are negative initially because many of the generator buses also have load
which must be served. In panel (c), the purple trace is seen dropping as the loads are scaled. This
is because this trace corresponds to the generator at bus 34. This bus is tied directly to the load at
bus 20 which decreases as s increases.

In order to validate the results of Figure 3.3, we test HELM against Newton Raphson Power Flow.

The best way to do so is by following these steps.

1. Compute the holomorphic voltage functions at each load bus and generate the Padé approxi-

mants.

2. Increment s and solve for the system-wide complex voltages.

3. Use the power flow equations to compute the injections at each bus.

4. Alter the 39 bus system loading according to (3.56) and alter the generation schedule to match

the power injections computed by HELM in step 3.

5. Run NRPF on the updated system and then use the power flow equations to calculate power

injections at each bus.
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6. Compare HELM and NRPF injection results.

The results of this process are presented in Figure (3.4). For each value of s, the absolute value of
the complex power injection differences (as computed by HELM and as computed by NRPF) are

plotted.

AP; = ’P?ELM _ P?IRPF‘ (3.57)

AQ; = QM — QT (3.58)
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Figure 3.4: 39 Bus System Complex Power Injection Error as computed by (3.57) and (3.58). In each
panel, the error is given in log scale. Much of the oscillatory behavior of the error is due to mismatch
tolerance is PSAT (the toolbox which is being used for these simulations): if the infinity norm of the
mismatch vector is too large, an extra NR iteration is required, ultimately driving down the error
between HELM and NRPF. As the system approaches bifurcation, the error becomes numerically
significant.
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This method was also tested in the 2383 bus Polish power system, and findings were very similar.
Based on these results, we conclude that the CPF via HELM method is able to very accurately
compute load bus phasor voltages for a given level of load increase. Moving forward, we take three

assumptions for granted (for a given system with a given set of loading rates).

1. CPF via HELM is a valid method for determining how voltage phasors in system change as

load increases.

2. Equation (4.97) is a valid method for analytically computing what sort of load level is necessary

in order for a particular bus to reach a particular voltage magnitude.

3. Equation (3.54) is a valid method for determining the load level which will cause a system to

reach static voltage collapse.

3.4 Defining a Probabilistic Loading Margin Based on Es-
cape Probability

Let us assume that the base complex power load at bus i is SY. When CPF is performed with
HELM, the value s, is the voltage collapse loading parameter (it will be applied to all buses) and k;
is the normalized rate at which the load is increasing. Therefore, SY is the load at bus ¢ associated
with system-wide voltage collapse. For a two bus system (generator and load), we have the following
expression:

S¢ = S 4 sk SY

K2

For the base loading condition, we have that s = 0, and for the collapse condition, we have that
s = s.. Therefore, for each plausible loading scheme, we want to determine the probability that s
could increase to a level such that it violates s.. In order to do this, we must model how the load

increase might occur over a time frame of several minutes.
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3.4.1 Employing the Ornstein-Uhlenbeck Process to Model s(t)

We would now like to model the load factor s(¢) using an Ornstein-Uhlenbeck process. We assume

that s(t) increases from a base level which it continually reverts to (over a short period of time).

s(t) = so(1 4 u(t)) (3.59)

where u(t) is a random fluctuation. We model this load fluctuation in the same way as we model the
load noise: as an Ornstein-Uhlenbeck process (stationary, Gaussian, and Markovian). Since this is
a mean reverting Gaussian process, the loads are constantly changing, but over time, the following

observation is true:

E[s(t)] = so (3.60)

That is, the expected values of the loads over time remain fixed at the base load value. The derivative

(or instantaneous change) in the fluctuations is given below.

at) = —— y ¢ (3.61)

We define the inverse time correlation like so: v = ﬁ The variable £ is an independent Gaussian

random variable with the following properties.
E[£(0)] = 0 (3.62)

E [&(t)&i(s)] = 0261(t — ) (3.63)

Clearly, ¢ is zero mean, and it is uncorrelated with itself at all times. The intensity of the noise is
given by the variance value ag. Based on these assumptions, we can compute the (non-normalized)

auto-correlation of the load fluctuation.

(u(t + At)u(t)) = ige—%ﬂ (3.64)

2y

If At =0, the equation directly computes the variance of the load fluctuations.

o2 =% (3.65)
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In order to computationally generate & values, we can use MATLAB’s “randn” function. This
command pulls data points from a zero-mean Gaussian distribution which has a variance (and
standard deviation) of 1. The standard deviation of the noise can be found by rearranging the

equation for load fluctuation variance and taking the square root of both sides.

o = /270y (3.66)

If we model this process via time domain simulation and we extend time to infinity, then we can

model the probability density function of the Ornstein-Uhlenbeck process [43].

—y(s—s0)?

gl o2
(s) = | —— g 3.67
uls) = [ o (3.67)
Therefore, we can also compute the CDF:

1 s — So
F.(s) = B 1+ erf (3.68)

0.2

- 3l (2]
L VA

Therefore, for a given noise standard deviation and a time correlation parameter, we can compute

the amount of probability that corresponds to s(t) exceeding s..

1+ erf (S ;foﬂ (3.69)
el

Pls > s¢) = Fulse) = %

3.4.2 Survival Probability

Employing this process is helpful for determining the long term (¢ — oo) distribution of s(t), but
we must remember that s. is a critical threshold. If it is surpassed, the system catastrophically
fails. Therefore, the area of the PDF exceeding s. in the CDF given by (3.69) is meaningless. In
order to rigorously compute the probability that a load will increase beyond a threshold during a
given time period, we must consider the survival probability of the system. The problem may also
be formulated by asking the following question: if a system is performing a random walk, what is
the time to the first-passage of a particular threshold? Such considerations are rigorously outlined
in [34].
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We start by considering a particle which has full range of motion. This particle performs a
Gaussian Random Walk with each step, and its mean position is xg. We model its concentration
with the following Gaussian distribution. It is both a function of position z and the amount of time

t for which the random walk occurs.

1 )2
clz,t) = me*( B (3.70)

The distribution answers the following question: for a given amount of time ¢, what is the concentra-
tion of the amount of time spent at position z?7 The distribution depends of the diffusion coefficient

parameter D. The diffusion coefficient can be defined statistically in the following way.

D= - (3.71)

This may be interpreted as the rate at which the variance changes over different time intervals®. We
now consider the situation where we encounter a so called “absorbing boundary condition”. In this
situation, if the particle reaches this boundary, it is absorbed and the system fails. We place this
boundary at the origin.

clx=0,t)=0 (3.72)

The particle’s concentration at the origin, and anything beyond this point, is 0. In order to solve
for the particle’s new distribution, we employ the following trick proposed in [34]: if the particle in
question has mean position xg, then we place a second (image) particle at —xy. We model both

concentrations below, where ¢, is the original particle, and ¢; is the image particle.

1 _ (@—zg)?

cp(z,t) = TrDte Dt (3.73)
1 z4ag)2

ci(z,t) = L (3.74)

Taking the difference of these two distributions will yield the (un-normalized) distribution of the

original particle given the boundary condition of (3.72).

1 o—w)2 otma)2
cp(x,t) = TiDi e e x>0 (3.75)

2For instance, a small time interval will have a small diffusion since the distribution will necessarily be tighter.
Longer time intervals will have larger diffusion (up to a limit), as the distribution will be more spread out.
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As presented in [34], we may make a small approximation to the expression ¢;(z, t) and then compute

the first passage probability. The algebraic approximation is as follows:

(3.76)

This is a strong assumption for zxy < Dt. In other words, the derived survival probability will have
a lower and lower validity as probability of survival decreases. Employing this probability, we can
compute F(0,t): the first passage probability (with respect to the origin). It is simply the positive
derivative of the concentration distribution ¢, at the origin times D. Computing this derivative

analytically requires the appropriation made above.

dep(z,t) 1 _ =5
F0,t) = | DL o 3.77
©.1) ’ ot |,—g V4rDt3 (8.77)

If we integrate this probability up to a particular time, we compute the probability that the threshold

will be exceeded. Of course, if time is extended to infinity, the probability converges to one.
t
/ F(0,t)dt' =1 t— (3.78)
0
Intuitively, the survival probability, S(¢), is one minus the integral of the first passage probability.

t
S = 1—/F(O,t’)dt’:1 N
0

— of <\/‘ZLM) (3.79)

Where erf is the error function, D is the diffusion parameter, xg is the origin of the particle, and ¢

is the desired time elapsed. This function assumes the threshold is placed at the origin, x = 0 and

that the particle’s original position is somewhere to the right of the origin xg > 0.

3.4.3 Modeling the Diffusion Coefficient for Consistent Stability Margin

Calculations

In order to achieve consistent stability margin calculations, we must consider how the load factors
change as load increases. For example, assume we are dealing with a system which has a load pocket

with an aggregate apparent power load of Sg. We then say that the likelihood of load increasing or

68



decreasing from Sy over ¢ minutes is directly related to the diffusion coefficient D. We scale all the
loads in the system such that the aggregate apparent power loading increases from Sy to Sg + s.Sp.

We define the following aggregate apparent power collapse loading.
Sc = Sg + $¢S0 (380)

As an aside, we note that scaling apparent power and scaling complex power is mathematically

equivalent (assuming a positive load increase and lagging power factors).

Se=S0+sS0 = [Sc|=S5 (3.81)

We may now compute the survival probability (which is a function of the distance between the

operating point and s.).

0 = ()
= erf(\/%) (3.82)

Assume now that the load increases from Sy to Sg+s;Sg. This will not change the aggregate apparent

power collapse loading condition. The system is simply closer to a collapse condition.

Sc = So + siS0 + (sc — si) So (3.83)

In order to determine the new survival probability, we again look at the distance between the

operating point and s..

S(t) = erf <S¢zﬁ;> (3.84)

We must ensure, though, that s is set up to consistently scale the same base load value. In other
words, s = 1 always corresponds to a 100% increase in base load. If this is not the case, then the
operator specified diffusion coefficient D will become invalid. When load has increased to Sg + s;Sg

and we want to scale it though CPF, we inevitably have to do the following;:

S= [So + SiSO] +s (S() + SiSO) (385)
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We reach collapse when s hits a value s..
Se = [S() + SiSO] + Sc (So + siSO) (386)

In this case, s has increased from 0 to s, but this does NOT represent an (s. * 100) % increase in
original base load Sy though. Therefore, we must transform the load factor such that it is always
scaling Sg.

Sc (SO + SiSO) = [SC (1 + Si)] So (387)

Therefore, we can compute the following survival probability.

S(t) = erf <S’(14\/%8)> (3.88)

In order to quantify s;, we rearrange the equation which computes the aggregate loading of the load

pocket S.
S = So + siSo (3.89)
4
5 = S gOSO (3.90)

Therefore, when the survival probability is being computed, (3.91) is used is order to attempt to

preserve the validity of the input parameter D.

se (14 55%)

S(t) = erf Tibi

(3.91)
This process can also be completed for arbitrary values of s. Say the system is operating at s = 0,
and we want to know the survival probability of some future operating point where the load (or

loads) has been scaled by s,,. We simply use the difference between s. and s,,, (where s. > sp,).

(Sc — Sm) (1 + Sgios")
V4Dt

S(t) = erf (3.92)
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3.5 Using HELM to Compute Optimal Control Action

Aside from using CPF via HELM to gauge proximity to voltage collapse, it can also be reformulated
in order to calcualte optimal reactive power injection. When every bus in a power system is operating
on the high side of the nose curve, the system is voltage stable. For any voltage stable system, the
injection of additional reactive power causes voltage magnitude to increase [14]. Therefore, HELM

can be formulated such that the loading rates are equal to 0 at all buses besides condenser bus C.

1 i1eC
k;, = (3.93)
0 otherwise

In this way, once HELM has been formulated, (4.97) can be used to calculate the maximum amount
of reactive power injection (to give the system maximum stability) without violating an upper
limit on voltage magnitude (such as 1.075 pu). This allows us to compute the optimal amount of
reactive power injection. In a real world setting, pushing voltage at a bus up to some maximum
threshold may not be wise control action, because if load decreases, voltage will spike. For the sake
of our experiments, though, the load is monotonically increasing, so over-voltage protection is not

an important consideration.

3.6 Controller Overview

In order to test the validity of using bus voltage variance in order to determine when control action
is necessary, we designed, implemented and tested three controllers. The flowchart overview of these
controllers are presented in Figures 3.5, 3.6, and 3.7, and they are designed to be implemented in a
load pocket with a high degree of observability. We define the term load pocket as a group or cluster
of interconnected buses with no internal generation and high load levels. Having a high degree of
observability in a load pocket is achieved either through (1) deployment of PMUs at each bus in
the load pocket, or through (2) optimal placements of PMUs combined with network math which
has the potential to transform sparse system measurements into a full set of system measurements.
Such a process is outlined in [45]. We assume a high degree of stability outside of the load pocket in
question. This assumption allows for the loads outside of the load pocket to increase and decrease
without having a major effect on the statistics of the load pocket. The controllers rely on having

full control over a reactive power resource such as a Synchronous Condenser (SC) inside the load
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pocket.

To be clear, the following three controllers take steady state control action. In the case of the
first two controllers, we (1) perturb the load load level, (2) run a 60 second time domain simulation,
and then (3) perform steady state control action, if necessary, based on a “snap shot” of the time

domain simulation results. A similar process is followed for the third controller.

Controller 1

Controller 1, as shown in Figure 3.5, relies on variance and mean statistics in order to determine if
either a stability or voltage magnitude violation has occurred. In this experiment, we assume the
loads in a load pocket of interest increase together monotonically, but we run CPF for a variety
of normalized loading rates to ensure that we account for a variety of different contingencies. The
loading rates can be chosen using operator knowledge of how certain loads jointly change over time.
Since we are dealing with a fictitious system, we generated our loading rates (found in Table 3.3)
by generating a vector of rates (from 0.90 to 1.10) and then assigning each rate to a bus in the
load pocket. Next, the vector was rotated by one index, and these new rates were assigned to each
bus. This process was repeated until each bus was assigned each loading rate at least once. Of
course, there are an infinite number of other loading rates schemes which could have been applied
to the buses, each with a different bifurcation point. This particular method assumes the loads
will all increase at approximately an equal rate, but some might increase slightly faster or slower
than others. Each loading rate scheme engenders a new critical variance profile to account for these
conceivable differences.

After running HELM and determining the distance to voltage collapse (the distance from s = 0
to s = s.), the loads are mathematically scaled according by the product of their assigned loading
rate and sy, where 0 < s, < s.. The value of s, is computed by setting (3.92) equal to the
desired minimum acceptable survival probability (as specified by the operator). The represents
the edge of the desired probabilistic threshold; if s increases beyond sp,, then the probability of
voltage collapse becomes too severe. After scaling the loads according to this factor, we use the
method presented in Section 3.2 in order to determine the algebraic covariance matrix for the system.
Doing so requires dynamic models and updated state variables for the entire system. The diagonal
elements of this matrix contain what we have termed “critical variances”, meaning that if the variance
measurements of the system match this profile, then there is a high probability that the system is
on the predefined probabilistic voltage collapse threshold. In this case, control action should be
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taken, as the probability of voltage collapse is too high. Every 60 seconds, the bus voltage variance
is measured for the buses in the load pocket. At any bus, if the measured variance is larger than
the critical variance, then a violation has occurred. Similarly, if at any bus, the bus voltage mean
has dipped below a certain critical threshold, a violation has occurred. If no violation has occurred,
PMU data is continuously monitored and tested. When new state estimated data are available, the
critical variances can be updated. This update may not be necessary, though, unless the system has
changed drastically. Otherwise, the critical variance profiles will change only slightly. If a violation
has occurred, the controller uses (3.93) to calculate the maximum amount of reactive power that

can be injected at the SC bus without causing an over-voltage violation.
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Return to
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Figure 3.5: Controller 1: Flowchart Overview of the Variance and Mean Based Controller. When
determining if a violation has been made, both the mean and the variance of the bus voltage data

are considered.

Controller 2

Controller 2, as shown in Figure 3.6, relies on mean statistics in order to determine if a voltage
magnitude violation has occurred. If the mean of the bus voltage of any bus inside the load pocket,

over a 60 second period, is less than a critical value, then a violation has occurred. In this case, the
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controller again uses (3.93) to calculate the maximum amount of reactive power that can be
injected at the SC bus without causing an over-voltage violation. In this way, controller 1 and
controller 2 take the same sort of control action when a violation occurs. The primary difference

between the controllers is in determining if a violation has occurred.

Monitor 60 seconds of PMU data. At the end of the cycle,
compute mean statistics for each bus.

}

Real
time voltage mean
violation?

yes ¢

With most recent state estimate data, reformulate
HELM with loading rates at all buses besides condenser
bus set to 0. Analytically compute loading parameter s
to achieve maximum voltage stability without an upper
limit violation on voltage magnitude.

}

I Perform Reactive Power Injection. I

}

Return to
START

Figure 3.6: Controller 2: Flowchart Overview of the Mean Based Controller. When determining if
a violation has been made, only the mean of the bus voltage data is considered.

Controller 3

Controller 3, as shown in Figure 3.7, simply holds the SC bus at a constant voltage of 1 per unit.
Whenever the load is increased or perturbed in one way or another, HELM is formulated to
calculate the amount the reactive power injection at the SC must be increased by in order to hold
its bus voltage constant. This sort of procedure is consistent with typical reactive power control at

SC buses.
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I Monitor Synchronous Condenser voltage magnitude. I
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With most recent state estimate data, reformulate
HELM with loading rates at all buses besides condenser
bus set to 0. Analytically compute loading parameter s
to achieve a Condenser Voltage of 1pu.
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I Perform Reactive Power Injection. I
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Return to
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Figure 3.7: Controller 3: Flowchart Overview of the Controller Based on Synchronous Condenser
Regulation. This controller does not consider the statistics of the buses inside the load pocket.
Instead, it simply injects enough reactive power to hold the condenser at 1 p.u. at all times.

3.7 Test Results

In this section, we present results from various experimental trials. In Section 3.7.1, we test all three
controllers on a load pocket in the 39 Bus system and contrast their effectiveness. In Section 3.7.2,
we demonstrate how active power control (or battery management of some sort) in a system which
has run out of reactive power control options can be driven by variance signals. And in Section

3.7.3, we briefly demonstrate the effectiveness of each controller on a large 2383 bus test case.

3.7.1 IEEE 39 Bus System: Reactive Power Controller Tests
3.7.1.1 System and Experiment Set Up

In this experiment, a load pocket is identified in the 39 bus test system, and a condenser bus is
added in the center of the load pocket. Identical transmission lines tie the SC bus to the buses 3, 4,

15, and 16. The parameters of this line are set slightly lower than the average R, X, and B values

76



across all 46 transmission lines in the system to ensure strong, yet realistic,voltage support. This
configuration is shown in Figure 3.8. In this system, reactive power limitations on generators are
not considered, and the SC bus can inject as much reactive power as the controller requests. We
assume full observability of the load pocket, such that 30Hz PMU data for each of the seven buses

is available after each time domain simulation.

22

23

, b
l 13 36
e 20

18 1 T

l 9 10 34 33

SRRNCINNG

Figure 3.8: IEEE 39 Bus System with Load Pocket Identified (Buses 3, 4, 14 15, 16, 17, and 18) and
Synchronous Condenser Bus Added (Bus 40)

This network contains 10 four variable synchronous generators. Each generator is equipped with a
three-variable turbine governor model for frequency control and a four-variable exciter model
(AVR) for voltage regulation. In order to test the controllers, the following inputs must be defined

by the operator. For each variable, we indicate what we used for experimental purposes.
1. Load Pocket Buses: We define buses 3, 4, 14 15, 16, 17, and 18 as the load pocket of interest.

2. Synchronous Condenser Bus: We define bus 40 at the SC bus. It is tied to buses 3, 4, 15
and 16.

3. Minimum Critical Voltage: What is the lowest allowable bus voltage magnitude? We
define this as 0.92 p.u.
7



10.

Maximum Critical Voltage: What is the largest allowable bus voltage magnitude? We
define this as 1.08 p.u.

Run Time: How long should PMU data be collected before it is processed? We buffer data

for 60 seconds, perform processing, and then make control decisions.

HELM Recursive Routines: Since HELM is recursive in nature, the operator must pre-
scribe how many recursions, or power series terms, are required in order to solve HELM. We
set n = 23 in order to achieve an extremely high level of accuracy, but such a large value
is not necessary. In order to avoid loss of accuracy associated with poor conditioning of the
Padé matrix, as discussed earlier in this chapter, we built safeguards into our code which dis-
regard power series terms which are either too large or too small. This prevents poor matrix

conditioning.

Load Noise: The operator must prescribe the standard deviation of the fast noise associated
with each load in the system if the loads were all scaled to unity. We use the noise model
described in Section 3.2.6 where the standard deviation of the load noise grows linearly with
the size of the load, and active and reactive power at a bus fluctuate in unison. For this
experiment, we set noise intensity o¢ = 0.01 for each load in the system. This value acts as
an input for two important processes: (1) our dynamic time domain simulations and (2) our

analytical covariance matrix solver.

Load Variation Time Period: This is the variable ¢ in the denominator of (3.92), and it
corresponds to the time (in minutes) for which we wish to calculate survival probability. We
use the value of ¢ = 5 minutes since real time load forecasting occurs every 5 minutes or so,
and we wish to determine the probability that the load increases to a level which causes static

voltage collapse during this period.

Diffusion Coefficient: This is the variable D in the denominator of (3.92), and it corresponds
to the variance of the base load values (with high frequency load variations filtered out) over
a period of minutes ¢t. We set this value to D = 0.0001. An operator must set this parameter

based on prior experience with load variability over a time period t.

Maximum Allowable Probability of Collapse: If a system is operating at its current
state, this is the maximum allowable probability of collapse which operators will tolerate. It

corresponds to one minus the survival probability of (3.92). If this value is exceeded, control
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action must be taken (only Controller 1 considers this metric). We set this value to PC' = 0.001
which corresponds to a 0.1% probability of voltage collapse over a 5 minute period. This is
fairly tight security. Jointly, out chosen values of PC, t, and D collectively correspond to a
0.1% chance of the aggregate load pocket load increasing by 10% over a 5 minute period. This
is a conservative scenario, since 10% load forecasting error is very high and would correspond

to a very rapid load build up.

11. Load Rates: In order to gauge proximity to voltage collapse, the operator must have an idea
of how the loads in the load pocket are going to increase in order to define the vector k (see
(3.93) for example). For the sake of this experiment, we assume the loads in the pocket are
all increasing monotonically and approximately uniformly, but in case the loads increase at
slightly different rates (as we have set up in our experiment), we use a matrix of loading rates
to cover a small range of different possibilities. For example, in the load pocket of the 39 bus
system, there are n = 5 buses which contain loads. Therefore, we come up with n + 1 loading

rate schemes (LRSs).

LRS1 | LRS2 | LRS3 | LRS4 | LRS5 | LRS6
Bus 3 1 0.90 | 1.10 | 1.05 | 1.00 | 0.95
Bus 4 1 095 | 090 | 1.10 | 1.05 | 1.00
Bus 15 1 1.00 | 095 | 090 | 1.10 | 1.05
Bus 16 1 1.05 | 1.00 | 0.95 | 0.90 | 1.10
Bus 18 1 1.10 | 1.05 | 1.00 | 0.95 | 0.90

Table 3.3: Unitless Loading Rate Profiles. Each row corresponds to a particular bus, while each
column corresponds to a different plausible load increase situation. By generating these different
loading rates schemes, we are able to generate a variety of critical variance threshold profiles. After
generating this table, the loading rates are normalized (not shown) such that aggregate load pocket
load increases by the same amount for each scheme as the holomorphic parameter s is scaled.

The previous list of variable definitions correspond to operator input parameters. We also make
assumptions about how the loads change which the operator is blind to. We start each experiment
with the same base load values. After each minute, we perturb the load in the following way® at
bus i:

Qi(t+1) = pQ; (t) (3.95)

31t is important to understand that load increases are affected by the slowly varying parameters o and 3, while
the noise associated with load fluctuations from time step to time step is 0 mean and quickly varying.

79



In our experiment, the slowly varying parameters « and [ are modeled by Gaussian distributions

and have the following associated statistics.

Ela] =E[8] = 1.01 (3.96)

0o =05 = 0.001 (3.97)

Therefore, after each minute, the loads in the load pocket increase by approximately 1%. Since the
standard deviation of o and 3 is tight, the power factor of each load remains relatively fixed. In
the case of Controller 1 and Controller 2, the load in increased, a time domain simulation is run,
and then measurements are processed. If there is a violation, control action is taken. In the case
of Controller 3, when the load is increased, we assume the controller can instantly adjust reactive

power injection in order to hold it constant.

3.7.1.2 Simulation Processes

In order to clarify our simulation processes and methods, we present Table 3.4.

Process Method
Power Flow Solutions Newton Raphson Routine in PSAT
Time Domain Simulation in PSAT using
PSAT’s dynamic models (see Appendix E)
Custom algebraic routine which relies on
PSAT’s base case power flow solution
Custom routine which alters the reactive
power injection in PSAT’s system datafile
Custom algebraic routine which relies on
Covariance Matrix Solver PSAT’s dynamic system model and
PSAT’s pre-calculated Jacobians

Dynamic Simulations

CPF via HELM

Reactive Power Control

Table 3.4: Simulation Processes and Methods

3.7.1.3 Test Results

In order to test each controller’s effectiveness and ability to respond to measured PMU data, we ran
10 simulations with identical system and experimental parameters for each controller (30 simulations
total, with each simulation taking approximately 1.5 hours). In each case, the experiment was

terminated either when a NR-power flow failed to converge after a ~1% load increase or when a
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bifurcation was reached during a time domain simulation (this could occur because of a Hopf or a
SN bifurcation). Table 3.5 summarizes the simulation results. The success of each controller, in one
sense, can be based on how large the load (which is given as the aggregate load pocket load) is able

to grow before bifurcation occurs.

Initial Load | Largest Load Smallest Load Average Load
Controller 1  61.9+4 515.3 | 99.0 + j24.5 96.5 + 723.8 97.9+j24.1
Controller 2 61.9 4 515.3 | 95.8 4 523.8 89.9 4+ 522.4 93.1 +j23.0
Controller 3 61.9+ 515.3 | 92.3 4 522.9 90.0 4 522.2 91.1 +j22.5

Table 3.5: Initial, Largest, Smallest, and Average Load Level Reached before Bifurcation for Con-
trollers 1, 2, and 3 over all 10 Simulations. Load Values, which are calculated as the aggregate of
the load in the load pocket, are all given in p.u. with a 100MVA Base.

Clearly, Controller 1 is able to deter bifurcation most successfully. To quantify the success of
each controller, we compare how much the aggregate load (in terms of apparent power) was able to

increase from the base load condition to the average bifurcation point.

Initial Load (p.u.) | Average Bifurcation Load (p.u.) Percent Increase (%)

Controller 1 63.8 100.8 58.0
Controller 2 63.8 95.9 50.3
Controller 3 63.8 93.8 47.0

Table 3.6: Average Percent Increase in Apparent Power Loading for Controllers 1, 2, and 3 Over the
10 Simulations. Load Values are all given in p.u. with a 100MVA Base.

52F

Bifurcation Load Level (% Increase)

48 .
—— Controller 1
46 — Controller 2
— Controller 3
44 L L L L L L L L
1 2 3 4 5 6 7 8 9 10

Sorted Experimental Trial Number

Figure 3.9: Bifurcation Load Level for Each Controller Across 10 Trials. The percent increase is given
as an aggregate apparent power ratio from the base case to the bifurcation case. For graphical clarity,
the experimental trials results are sorted for each controller such that the traces are monotonically
increasing.
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Although the percentages in Table 3.6 and Figure 3.9 are highly dependent upon the base loading
condition of the system, for our configuration, Controller 1 is able to outperform Controller 2 and
Controller 3 across all trials. To understand why this is so, we present several other sets of results.
Figures 3.10, 3.11, and 3.12 show the average load pocket voltage magnitude mean and voltage
magnitude variance as load increases for the three controllers. In these figures, the statistics are
collected from time domain simulations which are run directly after the loads have been increased
according to (3.94) and (3.95). This means Controller 1 and Controller 2 will not have taken action
yet (since they need to sense a violation before taking control action), but Controller 3 will have

(since it holds voltage magnitude at the condenser constant at all times).
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Figure 3.10: Voltage Magnitude and Variance for Controller 1 as Load Increases. Show are traces for
three simulations: the simulation which allows load to increase the most, the least, and the median
amount.
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Figure 3.12: Voltage Magnitude and Variance for Controller 3 as Load Increases. Show are traces for
three simulations: the simulation which allows load to increase the most, the least, and the median

amount.

In Figure 3.10, control action is primarily due to voltage magnitude violations initially, but as

load and reactive support increase, control action is taken in response to variance signals. For this
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reason, voltage variance measurements increase approximately monotonically. In contrast, Figure
3.11 shows that the system is taking control action in response to voltage magnitude violations only.
For this reason, voltage variance measurements are constantly spiking up and down as the system gets
extremely close to the stability threshold. The average voltage magnitude in3.12 is monotonically
decreasing. The nose curve has a very gentle slope to it, even right before bifurcation, because
control action is taken directly after load increase each time the load changes. The nose curve alone
makes the system appear stable, but the bus voltage variance in the bottom frame tells a different
story. Of course, bus voltage variance is used to determine if a stability margin has been crossed.
For each controller, we plot the probability of collapse for a representative trial (as opposed to three
trials). In each case, we plot the probability of system collapse directly after control action has been

taken for all thee controllers.

10°

— Controller 1
10 - — Controller 2 B
— Controller 3
Maximum Allowable Probability
‘ * Bif‘urcation Point‘

1
0 10 20 30 40 50 60
Load Pocket Load Level (% increase)

Probability of Voltage Collapse

Figure 3.13: Probability of Voltage Collapse in the 39 Bus System. For each controller, the prob-
ability of voltage collapse is shown as the system iterates forward and load level increases. For
determining probability of collapse, we abandon the various loading rate schemes presented in Table
3.3 and simply use the first column (uniform loading rates).

Controller 3 has a steady increase in probability of collapse until the system bifurcates. Controllers
1 and 2 track with each other for the first 19 iterations (21% increase), but Controller 1 takes
actions sooner that Controller 2 does at this iteration. As can be seen, each time Controller 1
approaches the green threshold, it takes action to push the system back below this margin. It does
this until it can do so no longer. Once this is the case, the system takes continuous control action
at each iteration. Of course, the probability of voltage collapse is directly tied to the amount that
the holomorphic parameter s can increase and thus scale each load. Figure 3.14 shows, for each

controller, how much s can increase at each operating point before the system crosses the
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maximum allowable probabilistic threshold (panel (a)) and how much s can increase at each

operating point before the system reaches a state of static voltage collapse (panel (b)).
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Figure 3.14: 39 Bus System Distance to Voltage Collapse and Distance to Probabilistic Margin
as Load Increases. Panel (a) shows how much the holomorphic parameter s can increase for each
system until the probabilistic threshold diminishes to 0. Panel (b) shows how much the holomorphic
parameter s can increase for each system until the system reaches static voltage collapse.

Panel (b) clearly shows that Controller 1 is able to hold the system away from the voltage collapse
point (s = 0) most successfully, thus increasing the lifespan of the system. This is due to the
continuous control action taken by the controller, as determined by the variance violations.
Controller 2, on the other hand, takes no control action beyond load increase = 46% since no

voltage magnitude violations occur.

What is surprising about this plot is that the three systems bifurcate at different distances from
s = 0. One may expect the systems to bifurcate in the time domain simulation after s reaches some
critically low, consistent value. This is not necessarily the case, though, for two primary reasons.
First, the time domain simulation may bifurcate due to a maximum power transfer point being
reached (static voltage collapse), but it may also bifurcate because dynamic stability of the system
is lost. Dynamic instability is strongly associated with increased power flows out of the generators,

so as system loading increases, the probability of dynamic instability also increases. Second, the
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holomorphic parameter s continuously is scales the base load.

P+jQ = (Po+jQo) + (P + Qo) (3.98)

As load increases, though, the noise associated with the load also increases. Therefore, in a time
domain simulation, loads in a system with a high value of s will potentially fluctuate to larger values
than loads in a system with a small value of s. This makes the probability of bifurcation higher,

even if both systems are operating at the same stability margin.

3.7.2 IEEE 39 Bus System: Using Variance to Manage Active Power

Injection

As shown very clearly by the red trace in Figure 3.13, there comes a point in the operation of the
system (around load increase = 42%) when the injection of additional reactive power cannot push
the system back into the region of stability which the operator may desire for it to be operating in.
In this situation, deploying active power resources, such as battery power management or distributed
load control of some sort, may be of great interest to the operator. In order to show the usefulness
of such measures, we add an active power resource (such as a battery) to the SC bus. This is
shown in Figure 3.15. When the battery discharges, it shall alleviate the active power flows on the

surrounding transmission lines.
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Figure 3.15: IEEE 39 Bus System with Synchronous Condenser Bus and Battery Resource Added

One way for controlling the battery in real time is through jointly monitoring bus voltage variance
and bus voltage magnitude statistics. Essentially, the effectiveness of reactive power injection
diminishes when bus voltage variance is high (it has crossed the probabilistic threshold) and bus
voltage magnitude is also high. In this way, when these two conditions are met, we trigger active

power injection.

We show the value of active power control in the following experiment. We use the same system
configuration and parameters as described in Section 3.7.1, except a battery is added to bus 40.
Controller 1 is used to stabilize the system until reactive power injection can no longer maintain
the stability of the system (such that the probability of voltage collapse is less than 00.1%). High
variances and high bus voltage magnitudes trigger active power control. For the sake of this exper-
iment, we inject active power in the same way that reactive power is injected: we inject as much as

possible without any bus in the system exceeding an upper threshold on voltage magnitude (1.08

p.u.).
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Figure 3.16: Voltage Profile of 39 Bus System While Operating at the Stability Threshold. After
a load increase, the black trace shows the system voltage profile if no control action is taken. The
blue trace shows the voltage profile if active power is injected, and the red trace shows the voltage
profile if reactive power is injected. In each case where action is taken, the maximum amount of
power (P or Q) is injected such that no bus exceeds the upper threshold on voltage magnitude.

Injecting active power and reactive power clearly have quite similar affects on the voltage profile of
the system. The injections, though, shift the nose curve of the system in very different ways.
Injecting more reactive power causes the nose curve to shift “up and out” as shown by the red and
blue nose curves of Figure 1.12. Injecting active power, on the other hand, lessens the effective
power factor of the nose curve and causes the nose to shift downwards. When the system is
experiencing such a critical loading condition, this is the more effective method of stabilizing the
system. This is shown explicitly by Figure 3.17 through a plot of the probability of voltage collapse

for various injections.
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Figure 3.17: Probability of Collapse on the 39 Bus System for Various Injections. For graphical
clarity, the first 21 iterations (or load increases) are not shown in this plot (probability of collapse
is very low). When load increase reaches 41.5%, reactive power injections are unable to stabilize the
system. The high voltage variances (which cross the critical threshold) coupled with very high bus
voltage magnitudes trigger active power injection. The back trace shows what will happen to the
probability of collapse if no control action is take. The red trace shows how the system will stabilize
if the maximum amount of reactive power is injected into the system. Finally, the magenta trace
shows that an active power injection will stabilize the system adequately.

Taking no control control action will cause the probability of collapse to rise to a value of 00.5%,
while injecting reactive power will cause the probability to rise to 00.19%. Both of these values
surpass the maximum allowable probability of 00.1%. Injecting active power will cause the
probability of collapse to drop to 00.088%. This provides a sufficient margin of voltage stability.
We must note that 1.21 p.u. of active power in a system with a 100MVA base translates to 121
MW of power. This is an enormous amount of power (the state of Vermont, for comparison, has an

aggregate peak load of approximately 1000MW).

3.7.3 Polish 2383 Bus System

In order to further validate the usefulness of employing variance as an actionable control signal, we
test it on a load pocket of the 2383 bus Polish system. At the start of the experiment, we push the

system right to the brink of collapse. We then show that a voltage magnitude violation never even
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occurs before the system collapses.

3.7.3.1 System and Experiment Set Up

The topology of the Polish system is shown in Figure 3.18.
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Figure 3.18: Topology of the Polish System. Load buses are shown in blue while voltage controlled
generator buses are shown in green. The sizes of the colored bus circles are not drawn to scale, but
the thickness of the lines is relative to the apparent power flows of the base case power flow solution.

Once again, we identify a load pocket in the system and apply these methods. The results from
Chapter 2 can be used for this purpose rather nicely. For the base case power flow solution,
participation factor analysis readily identify buses 466, 230, 221, 414, 240, 401, 340, 218, 434, 188,
and 437 as problematic. Therefore, we define this cluster of nodes as a load pocket and test the
effectiveness of Controller 1 at maintaining voltage stability in this system. The node cluster is
located in the Southwest corner of the Polish system map, and an expanded view of the pocket can

be found in Figure 3.19.
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Figure 3.19: Polish System Load Pocket. Stable load buses are shown in blue, voltage controlled
generator buses are shown in green, and unstable load pocket nodes are shown in red. There are
11 transmission lines between node 466 and the nearest voltage controller. The radial nature of

the power distribution, along with relatively high line reactance in the load pocket, make for poor
voltage stability within this area.

We then add a SC bus to the system in the center of the load pocket. Based on how we have
connected its transmission lines, the SC has the ability to provide voltage support throughout the
load pocket. Its connections are shown in Figure 3.20. Of course, we could have added a series of

SC buses through the load pocket, or we could have placed the SC on an existing bus. All would

%: i//a

Figure 3.20: Polish System Load Pocket with SC Bus. Stable load buses are shown in blue, voltage
controlled generator buses are shown in green, and unstable load pocket nodes are shown in red. The
Synchronous Condenser and its transmission lines are shown in purple. The width of all transmission
lines shows how the power is flowing in a heavily loaded situation.

be adequate methods for regulating voltage.
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In order to perform this experiment, we pushed the system right up to the brink of voltage
instability?. We did this in order to limit the number of load increases necessary to reach static
voltage collapse. We also decreased all complex power loads in the system by 10% in order to
isolate the voltage instability to the load pocket region. As the load pocket was loaded, we applied
switched shunt support at 12 buses scattered throughout the system, along with condenser support
inside the load pocket, in order to maintain an acceptable voltage profile. With these given initial
conditions, we test the effectiveness of Controller 1 and Controller 2 at maintaining LTVS in the
system. Stability and magnitude parameters (diffusion coefficient, voltage magnitude limitations,
etc.) which were used on the 39 bus system experiments, as outlined in 3.7.1.1, were also used in
this experiment. Only the SC and load pocket bus indices have been updated. Table 3.7 presents

the preliminary results of this experiment.

Initial Aggregate Load (p.u.) | Max Aggregate Load (p.u.) |S|Increase (%)
Controller 1 4.805 + 70.507 5.053 + 70.533 5.17
Controller 2 4.805 + 50.507 4.947 + j0.523 2.97

Table 3.7: Bifurcation Loading Statistics for Controllers 1 and 2. Load Values are all given in p.u.
with a 100MVA Base.

Clearly, neither controller is able to allow a very substantial load increase, but this is primarily due
to the fact that the experiment begins with the system on the verge of voltage collapse. What is
substantial to note, though, is that Controller 2 never takes action over the course of the
experiment, as there is never a voltage magnitude violation. Controller 1, on the other hand, takes
control action after every load increase because the voltage variance is so high. Figure 3.21 shows
the voltage magnitude profiles of all buses in the system (except for the added SC bus)
corresponding to the initial loading condition and maximum allowable loading condition when the
system is controlled by Controller 2. The bus voltage difference between these loading conditions is

also shown.

4Due to computational expense of Polish System simulations, we only performed one trial of the experiment
outlined in this section.
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Figure 3.21: Polish System Voltage Profiles. Panel (a) presents the voltage magnitude profile for the
Polish System under Initial Loading. Panel (b) presents the voltage magnitude profile for the Polish
System when the load pocket has reached maximum loading (any increased loading will cause voltage
collapse) when controlled by Controller 2. Finally, panel (c) presents the voltage difference between
panels (a) and (b). Clearly, as the load pocket loading increases, load pocket voltages change most
significantly. Buses tied to supporting lines also see a small change in voltage magnitude. In panel
(b), it is significant to note that the lowest bus voltage in the system right before the bifurcation
occurs is slightly above 0.95 p.u..

As load increases, Figure (3.22) presented the average load pocket voltage magnitude (panel (a))
and the average load pocket bus voltage variance (panel (b)). These statistics are collected from
time domain simulations performed directly after load has been increased (and thus before control

action has been applied).

93



@)

0.99

Average LP Voltage (pu)
[

0.98 —— Controller 1
— Controller
0'970 1 2 3 4 5
1) ~4
% 2X 10
= | (b)
c
>
(0]
(@]
8
S 1t 1
o
-
S
© —— Controller 1
g — Controller 2
< 0 Il Il Il Il Il
0 1 2 3 4 5

Load Pocket Load Level (% increase)

Figure 3.22: Polish System Average Voltage Magnitude and Variance for Controllers 1 and 2. Panel
(a) compares the average bus voltage magnitudes. When the system is controlled by Controller 2,
bus voltage magnitude is monotonically decreasing since control action is never taken. Continuous
control action is taken by Controller 1, meaning bus voltage is regulated fairly well. Panel (b)
shows that bus voltage variance increases are monotonic for both controllers. This is expected, since
variance bus voltage variance gauges voltage stability, and it is not directly affected by the voltage
magnitude.
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Chapter 4

Conclusions

As reviewed in Section 1.5 and then demonstrated in Chapters 2 and 3, this thesis brings together
a number technical innovations in order to gauge proximity to and then improve voltage stability
through leveraging real time statistical data. Particularly, we incorporate and couple the following

methods:
e Power flow Jacobian decomposition identifies locations of elevated stress
e Static algebraic voltage collapse analysis, through HELM, determines critical loading levels

e First passage probability estimates the system survival time (and thus the probability of voltage

collapse)

e Statistical estimation, based on analysis of a full order system model, determines critical

variance thresholds

e HELM is reformulated to determine how much control action should be taken to achieve system

requirements

e Dynamical simulation is employed in order to validate system stability based on controller

actions

Our approach represents an innovative and unique combination of these methods, and we hope to
demonstrate the validity of combining distinct power system analysis techniques in order to develop

effective control methods.
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In Chapter 2, we successfully showed that the participation factors of the RPFJ can be used
to locate regions of high voltage variance in a large power system. These participation factors,
along with bus voltage variance, are blind to high voltage magnitudes which may give the illusion
of voltage stability. These participation factors are then used in Chapter 3 to identify an unstable
load pocket in the Polish Grid.

In Chapter 3, we test our method for using bus voltage variance as a control signal. As reactive
support increase and the nose curve of the system rises, the variance controller (Controller 1) takes
stabilizing action while the mean based controller (Controller 2) does not. Controller 3 simply holds
the Condenser bus voltage constant at all times (it does not wait for a violation signal to adjust its
reactive power output). Thus, Controller 1 allows the aggregate load pocket demand to increase 8%
higher and 11% higher than the demand in the systems controlled by Controller 2 and Controller 3
(respectively) relative to the base loading condition. This effectively increases the “survival time” of
the system. We also shown how Controller 1 can be used to control an active power resource. Active
power injection may be necessary when both bus voltages magnitudes and variances are high, as the
usefulness of reactive power injection will have diminished greatly in this case. In testing Controllers
1 and 2 on the Polish system, we find that Controller 2 takes no action before the system reaches
collapse. Controller 1, on the other hand, takes continuous control action. Variance based control

has been shown to be especially useful when the system is dangerously close to voltage collapse.

4.1 Future Work

There are a plethora of ways for improving the methods presented in this paper and further inves-

tigating LTVS. In the following three sections, we explain three such plausible improvements.

4.1.1 Generator Reactive Power Limits

In the analysis presented above, at no time did we consider the reactive power limitations on gener-
ators. We did not make these considerations because in Chapter 3, we were concerned with testing
how variance can be used as a control action signal. Putting reactive power limitations on the
generators does not invalidate these results. In order to add such limits, we can formulate CPF via
HELM. As we begin to increase the holomorphic parameter s, the Padé approximant as given by
(3.46) yields the system-wide complex voltages. As the nose curve of the system is drawn, the power

flow equations can be evaluated at each generator bus. If reactive power at a generator must increase
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beyond its limit, then the bus must be converted into a PQ bus. At this point, we simply reformulate
the HELM equations and add a PQ bus into the system (which is the generator operating at its

reactive power limit).

4.1.2 Generator Participation Factors

As indicated in Section 3.3.2, we formulate CPF via HELM by fixing the generator angles so that
active power increases are proportional to the electrical distance between a load and a given gen-
erator. For voltage collapse analysis of a load pocket, this is an adequate assumption. In order to
apply these methods for a full system, we must rigorously consider generator participation factors.
These factors determine how much active power generation should increase at a given generator as
system load increases.
In order to incorporate such factors, we consider the PV bus power balance equation (with the

unaltered admittance matrix).

N )

> YikVils) = SPV_ZS)(S) iePV (4.1)

k=1 g
As this equation stands, as s is scaled, the power generation at each generator will increase linearly.
This will not due. We must modify the real power injection values for two reasons. First, the loads
are not increasing at equal rates (some loads are not increasing at all). Second, we wish for the
generators to respond with appropriate power dispatch relative to their sizes. Assuming all values
loading rate value in the vector k are known, we base the following participation factor calculations
on the assumption that all generators will increase their output proportional to their size (and
their size is proportional to the amount of real power they are currently injecting into the system).
These factor can be derived using other assumptions, of course. In the original system, we have
the following amount of power demand, where buses 1 through m are PQ buses, and buses m + 1

through n are generator buses (including the swing bus).
m

R = - (R (s) +m(s27) 4 mis)) = - om(s”)

=1
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As the loading parameter s is increased past 0, we have the following amount of increased load.

At = = (R(S1) 3 (shaSt) 4 R (557) R (skasy”) 4 R(SH) 4 B sk
- - ; R (i) - s ; R (k:SP) sew

This means the total load increases by the following amount.

phol = — (?R (sleilnj) +R (stSiQHJ) 4o 4R (skmS;,’l‘J))

- s ; R (kSP) sew

This means generation has to increase by the same amount. In order to determine how much each

generator must produce, we begin by writing out the total amount of base load generation.

n
PR = PSS + PSSt o+ Pen = 37 poen
i=m-+1
The difference between the amount of power generated and the amount of power consumed is equal
to the losses.

P, __ pBase _ pBase
Loss — 4" Gen Load

Now, of course, the amount of generation must be increased by the amount that load is increased
plus an additional proportional amount for increased losses (so that the swing bus does not pick up

all of the added losses).

PDelta
Pérflscn = (PT(L;fIll+PT?fI21+."+Pn(§en>+PI]?o€;:ia+(;]gsse)PLoss
Load
n m S Z R (sz;nJ) n m
-3 S S (3 e S(s))
i=m+1 i=1 SR (S;“J> i=m+1 i=1
1

o
Il

In this proportional scheme, if the load is increased by a factor of 2, the power generated to account
for system losses is increased by the same proportional amount (a factor of 2). This is a relatively
conventional assumption. Therefore, the amount by which generation must be increased is given by

the following expression. For any given value of load factor s (which is a holomorphic parameter),
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the following values can be computed simply.

Delta
PDelta _ PDelta+ PLoad P,
Gen - Load PBase Loss
Load

S

— ; R (kis;‘”) 4

NgE

Il
-

® (kS (

R (si)

The task is to split up this generation value proportionally between the generators. We define a

n plen Zm: R (S;nj)>

i=m+1 i=1

NgE!

o
Il

generation participation factor for each generator. This is defined for generator m + 1 through n.

BGen PiGen
P = PBase = n (42)
Gen Z PiGen
i=m-+1

The generator participation factors have the following property.

Z pi=1

i=m-+1

Therefore, we increase the generation at generator ¢ by the following amount.

Inc __ pGen Delta
Pi - Pz + piPGen

We now wish to incorporate this scheme into the original PV bus power balance equation.

N (P™)  + PP — Q)
YLka(S) = ase - 1PV
2 ey

The value p; is a static parameter which does not depend on the value of the holomorphic parameter

s. It is now applied.

inj pEen Del . ~inj
(PZ )Base + iq G PGeenta B ]Q’L (S)
P» en

N
D YaVi(s) = 1:’";* ) iePV
k=1 2
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The value ngrllta is dynamic parameter which depends on the current value of s. It is now applied.

(P, —s| —t— | | X (kis?) - S—— ( >opEere YR (Si“j)) =@ (s)
as Z pGen im1 Z;R(Sinj) i=m41 i=1
i=1

N
i=m-+41 i

E YirVi(s) = i iePV

k=1

pGen
2

V(%)

Further derivation is not shown, but similar analysis as performed in Section 3.3.2 can bring this
problem full circle and allow for generator participation factors to be inserted into the CPF via

HELM solver. This will allow for the elimination of the fixed generator phase angle assumption.

4.1.3 Using Data Driven Covariance Matrices to Estimate the Jacobian

Matrix

As explained in Section 1.2.5, there is range of literature which uses the static power flow Jacobian
to gauge the LTVS and voltage collapse proximity. This Jacobian is only updated every five to
ten minutes when state estimation data becomes available though. If a system has a high degree
of observability, such that time series data is available at every bus for voltage magnitude, voltage
phase, active power, and reactive power, then a numerical covariance matrices can be estimated.

For variables X and Y, we can compute the variance and covariance terms with ease.

1

Cov(X,Y) = o7 > (Xi = pa) (¥ — p1y) (4.3)

1

Var(X) = +— (X = pa)? (4.4)

Therefore, we can build the active and reactive power covariance matrix opq and the voltage mag-

nitude and phase covariance matrix oyvg. We now consider the relationship between complex power

and voltage, given by (2.1):

AP Jpe Jpv A6O
AQ Jqo Jaqv AV
\
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AP A
= [J]
AQ AV

The power flow Jacobian can be thought of as a linear transformation which relates complex voltage
sensitivities to power injection sensitivities. As noted by (3.14), if such a linear transformation
exists, and the covariance matrices of the variables can be quantified, then the power flow Jacobian

can in fact relate the data driven covariance matrices.

O’pQ = J [ng] JT

If the power flow Jacobian is the only unknown in this relationship, there are numerical methods
(guided by a starting condition) which may be used to estimate the power flow Jacobian in real time.
Such real time statistical analysis could be very useful in LTVS analysis by applying the methods

outlined in Section 1.2.5.
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Appendix A: Technical Notation

Phasor Current Injection at Bus i I, = |I;] 7%
Phasor Voltage at Bus i Vi = |Vi] 7
Voltage Magnitude Bus i vV, = Vi
Current Magnitude Injection at Bus i L, = |Z;]
Complex Current Across Line i, j L; = |I; ;| 7%
Complex Power Load at Bus ¢ Sk = P+ Q%
Complex Power Generation at Bus ¢ SG& = PE + Q¢
Complex Power Injection at Bus ¢ S = S& — Sk
Real Power Injection at Bus ¢ P = P& — pkt
Reactive Power Injection at Bus ¢ Qi = QF — Q%
Base Complex Power Injection Sy = PP +5QY
Admittance Matrix Entry (Row ¢, Col k) Yir = Gik +JBik
Admittance (Y Bus) Matrix Y

Load Bus Set PQ = {1..m}
PV Bus Set PV = {m+1.n-1}
Voltage Controlled Generator Bus Set G = {m+1.n}
Reference Bus ID r

Non-Reference Bus Set r

Set of All Buses N = 1..N
n*® Complex Power Series Coefficient Vin]

Number of Recursive Iterations N,

Vector of Magnitudes X

Vector of Phasors X

Matrix "M" M
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Appendix B: Common

Abbreviations

AVR
CPF
CSD
DAE
EWS
HELM
IEEE
LHS
LP
LTVS
MPTP
NRPF
PMU
PSAT
RHS
RPFJ
SC

SG
TG
SN
VSI

Automatic Voltage Regulator
Continuation Power Flow
Critical Slowing Down
Differential-Algebraic Equations
Early Warning Signs
Holomorphically Embedded Load Flow Method
The Institute of Electrical and Electronics Engineers
Left Hand Side
Load Pocket
Long Term Voltage Stability
Maximum Power Transfer Point
Newton Raphson Power Flow
Phasor Measurement Unit
Power System Analysis Toolbox
Right Hand Side
Reduced Power Flow Jacobian
Synchronous Condenser
Synchronous Generator
Turbine Governor
Saddel-Node

Voltage Stability Index
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Appendix C: Nose Curve

Derivation

We can analytically solve for the load bus voltage magnitude as a function of loading, power factor,
line parameters, shunt support, and tap ratio. We begin by formulating the admittance matrix for
the circuit presented in Figure 1.8. Note that since the transformer does not shift the phase of the

voltage, the Y bus matrix is fully symmetric.

G+jB+j 25 _G_jB
Y Y, 2 J
Y — ff ft _ c2 ‘ c (46)
Yir Ya =R G+ B+ + B,

We apply the power flow equations (1.16) and (1.17) at the load bus only. Since the “from” bus is

attached to a generator, we assume 6y = 0 and Vy = 1.

B
Pt = V%G + Vt |:—f COS(et) - z sin(@t)} (47)

B; G . B
Qi =—-ViB+ 2"1 + Bg) + V; {c sin(6:) + = cos(Gt)] (4.8)

Clearly, neither power injection expression depends on ¢ since 6,y = 6; — 0y = 0,. Since no power
(real or reactive) is generated at the “to” bus, the injected power expressions are simply equal to

the negative of the power consumed at this bus. Therefore, the following is true:

Pl—— (Ptinj) _v, [GCOS(Qt) —l—Bsm(ﬂt)] e

inj B, Gsin(6,) — B 0
= Q) Vi By, [0~ Bt
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Rearranging both sides yields the following expressions.

PF+VIG = %G cos(fy) + %B sin(6;)

Bsh
2

Q- —v2(B+ 5 g = %Gsin(Gt) _ %Bcos(ﬂt)

Also, we can write the complex power of the load in the following way, where § = tan(d) is a power

factor parameter and ¥ is the phase shift between the load voltage and current (6, — 6;).
Sy = Pp(1+jB) (4.9)

Ultimately, we wish to solve for V; explicitly. To eliminate the nonlinear trigonometric terms, we
square both expressions (6; can be eliminated through the identity sin?@ + cos? = 1). We also

write the active and reactive load demand in terms of Pp and .

2
(o +v6)" = (LGeoston + L psinian) (1.10)

2 2
(ﬁPD — V(B + sth + BS)> = (\ithin(Gt) - %B cos(@t)> (4.11)

Computing the square of each side yields the following expanded expressions.

2 2 2
P} + ViG® +2PpViG = %Gz cos”(6;) + %BQ sin’(6;) + Z%BG sin(0:) cos(6:)

2

2 2
Bon +B,) = %GZ sin’ (&)+%BQ cosz(et)—Q%BG sin(6) cos(0;)

2

Bsh

+B.)?—2B8PpV} (B+ 5

B2 Pp+Vi(B+

Both of these equations can now be summed together. As shown, the final terms cancel out and the

expression simplifies.

B, Bs
P} + V{G® +2PpViG + B*Pp + V{(B + é" + B,)* —28PpVi (B + 2h + B))
vV} Vi 2 Vi e Vi
= C—;Gz cos®(0;) + c—;BQ sin’(0;) + C—;G2 sin®(0;) + C—;Bz cos”(0;)

& V2
+2c—2tBG sin(6¢) cos(6:) — QC—;BG sin(0;) cos(6:)
V? 2 2 2 V% 2 .2 2
= C—2G (cos (0¢) + sin (0,5)) + C—ZB (sm (64) + cos (91))
Vi

2
> B
c

V2
=216+
c

_Vvi

2 (G* + B?)
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We can bring all terms onto the left side of the equation and thus set the expression equal to 0. The

equation is flipped around and like terms can be grouped.

Bsh Bsh 1?

0 = Pb+VIG*+2PpViG + B P+ Vi(B+ =" + B.)* = 28PpVi(B+ =" + B.) - — (G* + B?)
B. B. G? + B?
- Wkﬁ+w+ h+&fyH@P%G—%&ﬂH»;+BQ—;;+VH%+ﬂ%ﬁ

= Vila]l+ Vi + Vi

Since coefficients a, b, and ¢ are known, the square root of the quadratic equation can be used to

solve for the magnitude of the “to” bus voltage.
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Appendix D: Quantifying Load
Noise via Second Order Delta

Method

We consider variable X and a function of this variable, g(X), as is done in section 1.2.8.

P00 5y
g"(px) (
2

~ X ((fJH(Qm) X +(9'(px) - g”(ux)ux)> + <g(ux) + %;& - 9’(ux)ux)

g(X) =~ glux)+9g'(px) (X —px) +

Q

9(nx) + 9 (nx)X — ' (ux)px + X2+ pk — 2X pux)

We can take the variance of both sides.

Var (g(X)) ~ VarX (( (F522) %+ @) - o))

+ (g(ux) + gﬂ(;X)u?x - 9’(ux)ux)>
~ Var (X <(g”(2“X)) X + (g (nx) — g”(ux)ux)))

The problem can now be reformulated.

Var (2 ((L9) X 45/ (x) - 5" (exh) ) ) = Var (X 0 + )

Where we have made the following substitutions:

(e
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b= (9'(ux) — ¢"(ux)px)
We must remember that the expectation operator is a linear operator:
E((aX +b)) =aE(X)+b

We can now compute this variance:

Var (X (aX 4+ b))

Il
/N

E((X (aX + b))Q) ~E(X (aX +b))?
(X? (¢®X? + 0% + 2abX)) — E(aX? 4 bX)?

E
=E (a®X*) + E (b°X?) + E (2abX?) — (aE (X?) 4 bE (X))

— 0’F (X*) + VE (X?) + 20bF (X?) — (aE (X?) + bE (X))’

Each of these can now be computed. Initially, we only know the following values: E(X) and Var (X).
Using just these values, all of the moments of X can be determined (this is true for a Gaussian

Distribution).

E(X?) = E(X)? + Var (X)
E(X?) = E(X)? 4 3E(X)Var (X)
E(X*) = B(X)* + 6E(X)?Var (X) + 3Var (X)?
This final expression for the variance is arrived at:
Var (X (aX +b)) = a? (E(X)4 + 6E(X)2Var (X) + 3Var (X)2)
+ 0% (E(X)? + Var (X))

+ 2ab (E(X)? + 3E(X)Var (X))

~ (a (BIX)? + Var (X)) + BE (X))’

It shall now be shown how this can be used to quantify the noise of a load. In this expression, the

variables a and b were defined in the following way:
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"

b=g(ux) — 9" (nx)px

We can write these equations in terms of load power variance and bus voltage variance, where we
have the function V; = g(Pp) (written using simplified notation). The base load value is pp and

the variance of the load power is 0%. We redefine a and b

"

b=g'(up) — 9" (up)pp

With this clarification, we can move forward with the variance calculation.

oy, = Var(Pp(aPp+1))
= a® (up +6upop +30p) +0° (up +0p)
+2ab (1 + 3ppop) — (a (pp +o0p) + b,up)2
= a’up +d*6ubo’ + a’30p + b1ud + b2ob
+2aby + 6abupop — (au?a + ao? + bup)2
= d’up +d*6ubo’ + a’30p + b1ud + b2ob
+2abu 4 6abupos — a’up — a’op — b2 u3
—2a*p%0% — 2a0%bup — 2abu
= (2d°) op+ (a*6up + b* + 6abup — 2a°up — 2abup) op

+ (Ppp + b pb + 2abpp — a’up — b up — 2abpp) o
The voltage variance can be pulled to the other side.

0 = (2a2) op+ (a26u§3 + b2 + 6abup — 2a*u% — 2abpp) o2,
+ (Ppp + V2 pdb + 2abph — a’pp — b’ pp — 2abpp — oi,) o

= (20%) op + (40’ +b* + dabup) b + (=0, ) o
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We employ the following symbols:
c1 = (2@2)

co = (4a2u2p + 6%+ 4abup)
C3 = (—0"2/)
The quadratic formula can be used to solve for the variance of the load power

—(c2) £ (02)2 —4cieo
0% = 20, (4.12)
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Appendix E: Detailed Power

System Model Overview

Algebraic Equations

A plethora of algebraic equations underlie the system g. The most fundamental algebraic equations,
though, are the power flow equations. Loads at each load bus are modeled by the two power flow

equations of (1.16) and (1.17).

P =V; Z Vk ik COS i k) + Bi,k sin(&iyk)] 1eN

=V; Z Vi [Gigsin(0;x) — Bigcos(0; )] i €N

The load magnitudes have a slight frequency dependence. The algebraic variable Aw, which is the

frequency deviation at bus 7, is computed as follows.

1

Aw —
w = xf+277fnTF

(6—06°) (4.13)

The variable x; is a filter state variable (reviewed below). The variable Aw is in turn used to

calculate the active and reactive power demand at bus i.
=" (14 Aw)’ (4.14)

q=q¢"(1+ Aw)’s (4.15)

Power injections at the generator bus are also modeled by the power flow equations, but many other

algebraic equations are necessary to model the generator dynamics. We review the most fundamental
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ones which incorporate the algebraic variables of y. At generator bus i, the following two equations

relate the bus voltage V and the g-axis and d-axis machine voltages (for notational simplicity, each

given variable corresponds to the variable at bus i).!

vg = Vsin (§ — 6) (4.16)

vg = Vcos (d —0) (4.17)

The variables vg and v, are then used to relate the g-axis and d-axis currents to the active and
reactive powers of the machine.

p= Udid + vqiq (418)
q= qud - Udiq (419)
The mechanical power and voltage reference algebraic variables are held at their respective set points.
0=p0 —pm (4.20)
0=} — vy (4.21)
Two algebraic equations are needed to relate the algebraic variables of the TG.

0=pm— pf%,n (422)

0 =wls — Wret (4.23)

And finally, two more algebraic equations relate the algebraic variables of the AVR.

0=uvp— 7" (4.24)
0 =10 — Vyet (4.25)

Of course, none of the active feedback equations are given, but we can now populate the vector y

LIf the reader is unfamiliar with these models, variable definitions for these equations are presented in [28].
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with all of the algebraic variables of the system, each of which is given above.

Aw

y= (4.26)

Vref

Differential Equations

A series of 13 differential equations (reviewed below) are needed to model the generator and load
dynamics. The equation governing the stochastic load fluctuation variable v is given by (2.15). The
relationships between u and the simulated active/reactive load values are given by (3.19) and (3.20).

This model is not defined in PSAT and therefore was added manually.

i=—FEu+¢ (4.27)

While u determines the noise of the loads due to stochastic demand, the load levels at each bus
in the system are also given a slight frequency dependence, where Tr is a filter time constant (to

reiterate, all variables incorporated in the following differential equations are defined in [28]).

iy =—— (4.28)

The filter state variable x; determines the frequency deviation Aw, as previously stated. Four
differential equations model the SG dynamics. These equations relate the dynamics of the rotor
angle, the rotor frequency, the g-axis transient voltage, and the d-axis transient voltage. It is

important to remember that ¢ is the angle of the rotor with respect to a synchronously rotating
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reference frame.

Three differential equations model

S (129)
. —D(w—
_ Pm — Pe < (w WO) (430)
—fel (a:d—:c,)id—kv*
_ T d (4.31)
Ty
—e:i + (;v — x/) A
- T (4.32)
Ty

the TG dynamics. These equations govern the feedback loop

implementing droop frequency control.

43

Pin ; Tg1 (4.33)
<1 — &) wgl — .’1392
_ e - (4.34)
(&
(1) (ot ) o
_ i T ° (4.35)

Four differential equations model the AVR dynamics. These equations govern the feedback loop

implementing voltage control.

vp =

V -,

4.36
- (4.36)
Ka ('Uref — Um — Upr2 — %Uf) — Ur1
f
4.37
. (137
Ky
~ (v +on)
_— 7 4.
= (139)
B (Uf (K@ + S@(Uf)) B v"") (4.39)

T

We then populate the vector x with all of the state variables of the system (except for u, which is
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an independent input).
Xf

w
(4.40)
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Appendix F: Line Current

Covariance Matrix

To compute the line current covariance matrix (which may be translated into a correlation matrix),
we must begin with basic circuit analysis of the Pi Equivalent Circuit Model shown in Figure 1.1.
Because all state variables are known and the system is fully characterized, we can use the voltage
phasors and admittance values to solve for the current phasor ft ¢- Initially we use the voltage on
the secondary side of the transformer XN/JZ which is then transformed into the voltage on the primary

side ‘7f.

- -\ B N
Te = (Vjﬁ) i=E (V; - Vt) 1Gip.0| 3950 (4.41)
U

~ Vi\ .B Vi ~\ .. .
o= ()% (L) oo

The expression in (4.41) can rearranged such that the voltage terms are grouped separately.

~ Vi\ (.B I S
Ip: = (g) (]g’t + |yf,t| emf’t) -V (‘yf,t‘ €j¢f’t) (4.42)
The expression in (4.42) can be written in terms of the expanded voltage phasors.

I “7 ’ 39 ‘%‘ €3 4 [l e
= e — —_
fit f =

V| fi7e] e70e+or0 (4.43)
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Now we combine the admittance terms attached to “N/f‘

I Ko 2 G »
|y | € - |a ejq) ( . )

Rewriting (4.43) yields a simplified expression.
Ipi= )Vf‘ '] e 0s+) — ‘fé’ |Gp,4] €70 01:) (4.45)

Both sides of the current phasor expression can be divided by the angle associated with the first
terms in equation (4.45).
s = [P 1= [ et (446
i (05 +¢) ! | 19r ‘
Dividing by an angle simply shifts the phasor diagram of the current; it does not alter the current
magnitude. In this case, we are investigating current magnitude variance, so we can shift the phasor
all we want without affecting magnitude. We now define a new quantity I },r This value has the

same magnitude as I, 7.t but a slightly shifted phase.

~ ff .
! _ )
Iy = v (4.47)
.= ’ff,t (4.48)
An expression for I/ }.+ can now be written.
Ty = 75| 191 = ||t 0000 (4.49)

To gain a more intuitive sense for the problem, we can draw a triangle which relates the three

separate terms in (4.49).
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=17l ¢ =1l = i

a= |‘7f||3~’,|

C=6,—6;+0;—0

Figure 4.1: The relationship between the current vectors is shown. Three magnitudes and one angle
are known. Clearly, the magnitude of the current depends on four dynamic variables: Vs, Vi, 0,
and 6,. The values of ¢, and ¢ are static.

In order to determine the change in current magnitude, we employ trigonometric identities which
directly relate changes in V¢, V¢, 0¢, and 6; to changes in ‘IN Fit ‘ The law of cosines can be employed
for this purpose, as it relates three magnitudes and an angle of any sort of triangle. The law of

cosines is given in (4.50), with magnitudes a, b, and ¢ and angle C given in Figure (4.1).
& =a®+b* —2abcosC (4.50)

Since the current magnitude is equal to the variable ¢ in (4.50), we must take the implicit derivative

of the function with respect to a, b, and C

0 , Oc
%c = 20% = 2a — 2bcos C

dc  a—bcecosC

—_——=—_— 4.51
da c ( )
The same computation can be done for b

o , Oc

%c = 20% =2b—2acosC
dc  b—acosC
—_—=— 4.52
ob c ( )

And finally, this can be completed for angle C

g 5,  Oc .
%c —26%—20,1)81110
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Oc absin C
— 4.
oC c (4.53)

All of these derivative equations can be extended to the current, voltage, and admittance values of
the triangle in (4.1). Again, admittance values do not effectively change, so at all times, |§’| and

|Gf¢| are constant. This fact is reflected in the simplified derivative terms given below.

o|Tra| 191 (|7] 191 = T3] 134l cos(0. — 0 + 654 — )
7 = = (4.54)
o7 z
O|Tra| 1374l (|Ve| 15701 = | V5|11 cos(: — 07 + 670 — ¢)
—7 = = (4.55)
0|V, iy
o|Tra| = |Vi| 11| V|13l sin(@r = 0y + 61— &)
50, — (4.56)
f If7t
9 ‘ff,t‘ ‘vf‘ 7| “Z‘ gl sin(0r — O0f + ¢re — @)
_ — (4.57)
00, Ty
As previously stated, the law of cosines gives an equation for the current magnitude.
~ |2 ~ 2 ~ 2 ~ 1, . .
Tre| = (|Ve)191) + ([W] 132el) =2 (|7 1571) (|| lisal) cos(6c = 7 + 6 = &)
This expression can be square rooted and then written as a function h.
’ff.,t =h(Vy, 05, Vi, 0:) (4.58)

Once again, the first two terms of the multivariate Taylor Series Expansion can be used to find the
sensitivity of the current magnitude with respect to voltage magnitudes and voltage phases. We
will linearize about the steady state operating point (i.e. Vg, 80y, Vy,0;) and solve for the sensitivity
of the current magnitude. Voltage and current magnitudes will now be written as true magnitudes

instead of absolute values of phasors.

Ols4
OVy

oLy,
a0,

ol ol
Lt Ay, 4 S0t

+ vV, 29,

Vi§,05,Vi,0t

‘fﬁt‘ =l ~1fy AV + NGy + YA\’R (4.59)
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Now, the LHS can be perturbed, and I, can be subtracted from both sides to yield the
V5,05,V 0¢
current magnitude sensitivity. The partials also can be evaluated.

"2 / / ’ : ’
-V 0, — 6 — Viy'V 0, — 06 —
Al — V() y'ypicos(Op —O0p + by — ¢ )AVf V' Viypasin(@, — 05 + ¢ — ¢ )Aef
: If7t If7t
2 .
Vi (Yre)” = Vyysay cos(by — 0 + ¢re — ') AV, + Viy'Viysasin(@, — 05 + ¢pe — ¢2)4169)
Iy, I,
Writing 4.60 as an inner product yields the following expression.
AV
JAX
_ | o1y, o1, o1;, 081,
Alue=1 50 5 3¢ AV (4.61)
t
YANCH

As expressed in (4.26), the algebraic variables contained in y contain all necessary values of V and
0, so the change in the algebraic variables will be equivalent to Ay. Using the function h defined in

(4.58) along with Ay, the current differential can be written more compactly:

AIﬂt = [ hvf hgf hv, he, ] [Ay] (4.62)
Finally, we vectorize the expression in (4.62) and generalize for the entire system.

AIf,t = |: th hgf th hgt :| [AY} (463)

Assuming we have already solved for the covariance matrices o2 and 0'3,, then we can use a trans-

formation based on (4.62) to solve for U%ft.

.
ot,, = [ hy, hy, hy, hy, ]oi{hvf hg, hy, hgt} (4.64)
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Appendix G: Solving CPF via
HELM with Configurable Loading

Rates

We first restate the embedded power flow equation which is applied at each load bus.

N
St + sk; S}
3 Viai(s) = 22000 epq (4.65)
- Vit(s*)
k=1
Again, the parameter k; is a loading rate parameter, and it can be positive, negative, or 0. It
corresponds the rate at which a bus will be loaded. We demonstrate the usefulness of this updated

PQ bus equation by first calculating its germ (s = 0) solution.

ol S + 0k;S?
. 2 e = 2 it )
; Vi (Vi[0] + OV [1] + 0% Vi [2] + -+ ) = AU SAD ) iePQ
\
N g
kz::l Vi xVi[0] = oAl iePQ (4.66)

Assuming we have already used HELM to solve the power flow problem, these base case loading
voltages are already known and we can solve for the s = 0 loading condition coefficients. This

condition corresponds to the base case with no additional loading. In order to solve for the proceeding
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coefficients, we set W{s] = ﬁ and we expand the notation.

D Yo (V0] + Vi[ls + Vi[2]s® +---) = S (W7[0] + sW7 1] + s*W7[2] - )
k=1
+sk;S; (W7[0] + sWi[1] + s Wi [2] -+ ) (4.67)

We now equate the like coefficients of s™.

N
> YikVal0] = ;W [0] (4.68)
k=1
N
> YiaVill] = S;WEA] + kS W [0] (4.69)
k=1
N
> YikVal2] = S;W(2] + kiS; W] (4.70)
k=1

These expressions (aside from the germ solution) can be generalized in the following way.
N
> YiViln] = S;Winl + kiS;Wiln —1] n>0 (4.71)
k=1

This expression is problematic, as V[n] depends on both W[n — 1] and W{n], and W|n| depends on

V[n]. To solve this problem, we first bring the term multiplied by W[n] to the LHS of (4.71).

N
Z YixVi[n] — S;Win| = kS Wi n—1 n>0 (4.72)
k=1

Next, we solve for the coefficients of W (s) = V%S) in the following way. We first multiply through

by V(s).

1 = W(s)V(s) (4.73)
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We equate coefficients with like powers of s on the LHS and the RHS of (4.73).

WVl =1 = W0 = ﬁ
WOV + W[Vl =0 = W[l]=— W&B][;/][l]
WOV]2] + WV + W[2]V[0] =0 = WI[2] =— W[O]V[2]V+[OF/[1]V[1}

This pattern can be generalized for n > 0.

> Wk]Vn — k]
Win] = — =2 7101 n>1 (4.74)
We plug (4.74) into (4.72).
v 5 WilkiVifn - 4
Z::kak n] + S; 7O = kiSIWin—1 n>0
I3
o . (Wil0lViln] + Wi[1]Vi[n — 1] + -+ + Wiln — 1JVi[1] " _—
;Yi,kvk[nhsi ( 70 ) =kSiWin—1 n>0
\
N *
SO ViaVeln] + 87 <Vi[n] 1‘42[[00]} 4 WlllViln = 1] +‘%-[(.>]+ Wiln = ”Vi[”) — RSTWI I —1] n>0

XN: YouViln]+(Vi[n])* Si( [[0]) 45 (Wimvi[”_” +‘2'[6]+Wi[”_1m[1]>*—kisi*w:[n—u n>0

— Vi[0]
(4.75)
We can make the following (generalized) simplification:
1
Wik k
Will]Viln — 1] + -+ Wiln — 1V;[1] k; Vil — K (4.76)
Vi[0] ; Vil0] '
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We can substitute the simplification of (4.76) into (4.75).

N Wiy ; Wilk]Viln — k] -
];E,ka[n]-l-(W[n]) S (Vi[O] ) +5; k 7 =kSiWrin—1 n>0
I3
v e S WikViln K
> Velhlnl + () (VVV[E)O]]) ~ S Wi n=1)=8; | s n>0 (477)

In order to solve this problem, we set up a linear system of equations where the unknown value
is always the n*® voltage coefficient. In (4.77), there are two unknown coefficient values at each
recursive step: Vi[n] and V;[n]. Because the complex conjugate of V;[n] is taken though, we must
break the equation voltage coefficients into real and imaginary parts. This is done for the LHS of
(4.77).

N * N . *
YouVilnl + il 57 (L) ST (G 1 3Bk) REViID) + 58 Vi) + (il))® 57 (220
Vi[o] Vi[O

k=1

N
= ) (GoaRVinl} + B kR {Viln]} — BixS {Vilnl} + iGi S {Vilnl})

it st (T
N
= Y ([GirR (Valnl} = BisS {Vilnl}] + 5 [BiaR{Vilnl} + Gi xS {Viln]}])

i st () ’

+

We make the following observation concerning the final LHS term of (4.77).

ity st (29— (vips; (L)) 4 g (vitps; ()
vilol vi[o] v;[0]

Now we can restate (4.77) with the LHS being broken up into real and imaginary components.

Z (GieR{Vi[n]} — B S{Vi[nl}] + 7 [BaR{Vi[nl} + G S {Vi[n]}])

s (s (S0 ) w8 (viooes: ()

*

N
k=

n—1
> Wilk]Viln — k]

k=1
=kSIW¥n—1] - SF _— 0
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This expression is split into real and imaginary components by splitting up the RHS.

] =

~ e ((WElOINT
k ([Gea Vilnl} - Boss (Vitn)]) +® (vibnr's7 (57 ) )

1

n—1 *

> WilkVi[n — k]
B R 1) o[ k=t n
=Rk SIWin—1)) - R | 5] Vi[0] -

kZNI B; 1 R{Vi[n]} + G, k\f{Vk[n]}]) +9 (VZ["]*S:‘ (I;I//:[E?]])*)

*

n—1
Z Wi k]Vi[n — K]
=S (RSIWrn—1) -S| 57 ’“Zlv—[o] n>0

We pull out the complex conjugate operators on the LHS of the expressions.

Wi[0] )
V0
5 Wik Vin - &]

— SR I — 1) — x| k=1
=Rk:S; Wi [n—1]) —R | S, V0] n>0

Z Gi kR {Vi[n]} — Bi xS {Vi[n }H)Hﬁ([

k=1
*

S (BaR {Viln} + GouS (Vilnl}) — ( Sk W:[[OO]]>
k=1

S WiVl -

=S (kSIWin—1)) = | s | £
=S (kiSiWin—1]) —| S; Vil n>0

We must manipulate the rightmost quantity on the LHS of the previous expressions in order to

isolate ®(V;[n]) and I(Vi[n]) from (V}[n]SZV‘Z—[[OO]]) and & (Vl[n] Sivéf—[[()[)]]) respectively. Ultimately,

we wish to solve for the quantities R(V[n]) and $(V[n]), and this cannot be achieved until these
quantities are isolated. We do so by leveraging the following property of complex algebra. Say we

have complex values a and b. These can be expressed via rectangular, or Cartesian, coordinates.
a=z+7Jy

b=w+jz
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We now take the real and imaginary components of their arithmetic product.

a-b=(z+jy) (w+jz) =wzr—yz + jyw + jzz

J
R((x+jy) - (w+j2) = wr—yz

= R@R®) — 3(a)3(0)
S((@+jy) - (w+jz) = ywtze

We may apply this fact to the quantity in question.

» (visiyig) =i (s (i )) -2 (5 (7))

(sl ) = o (s (g )) +wosons (s (7))

U
N
; nl} — Bjp S n i[n ; Wil0) - (Vi[n) S ; W[0]
;qcmmvk[ - Bus () + ROiED R (s (1)) - s (s (1)) @
n—1 *
> Wilk]Viln — k]
* * * k=1
= RS =) =R [ 8] | e n>0
N
; n ik n - (Vi[n ; Wi[0] — i[n]) S ; W.[0]
D (B3 041} + G (Vi) = 0 b (s (T ) —rmmna (s (T5)) 6
n—1 *
S WilkViin — &
=S (kiSIWrn—1) -S| SF ’“zlv—[o] n>0

Now, the only unknown quantities are the n'" voltage coefficients. To gain some intuition, we

formulate the problem with matrix notation. We start by defining the rectangular voltage vector
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Vg which has length 2m, where PQ = {1...m}.

Vr

Next, we define the altered 2m by 2m rectangular admittance matrix Yg.

member elements.

A sample of this matrix can be expanded and shown explicitly.

Vi =

Gij —Bij
Bi; G

1,7 odd
1) i odd, j even
52

i 1) i even, jodd

1 =1,j even

(4.80)

It has the following

(4.81)

(4.82)

In order to write the vectorized power balance expression for the entire system, we employ these

matrices along with the vectors generated from generalizing (4.78) and (4.79) for every load bus in
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the entire system (1 through m).

Rl R (51 () SWilD S (s (%))
SR (5 (129)) ROARDS (51 (425
YrVr + : - :
?R (‘/‘"L [nD éR (S'm ( V‘ZZL[[OO]] ) ) S (‘/"L [n}) g (S'm ( V‘Z;‘[[OO]] ) )
| S Wala) R (5w (Yf)) | [ RObDS (Sm (Y1) |
- n—1 * b
Z W1[k]V1[n—k]
RSt = V1[0]
n—1 *
_ _ > Wilk]Vi[n—k]
R (k1 SiW[n — 1)) S|S| = —
S (k1 STWT [n —1])
n—1 *
R (km Siu Wi [n — 1]) > Wi [k]Vin [n—K]
* * RS, B
| S (kS5 Wil — 1) | " Vel
n—1 *
Z Wm[k]v'm [nfk]
S| Su |

We rewrite the LHS of (4.83) in a more compact form in order to show how the unknown coefficient
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values can be combined into one single vector.

R (s (ver)) S (st () 0
~S (s (W) —m (s (1))
0 0
Yr +
0
0 0 R(sm (%001)) -9
L : =3 (s ()
nilwl [k]V1[n—E]
R Sik = V1[0]
n—1
) ) Z W1 [k] Vi [n—k]
R (k17 W7 [n - 11) SN )
S (k1S Wi [n —1])
R (ko 55, Wi 0 — 1) S Won Vi
| S (km Sy, Wi [n—1)) ] R|SL | v
n—1
Z W [k] Vi [n—k]
S| sy | 2= Vool

0
Vg
0
(V)
(V)
(4.84)

In order to actually solve this linear system, the matrices on the LHS of (4.84) are combined into one

rectangular admittance matrix. We call this new matrix Y}%- It has the following member elements.

%(Y7‘,+1 ﬂ) i,jodd, i # j

2 02

W%‘ [0]
- N
N S% V% 0]

i,jeven,i # j

W, o]
A — . 2
Y;%) AR

129

Wit (0]
2

# (Vg ups ) + 9 <S+ (mm

2

i,j even,t = j

>> i,jodd, i =j

i10odd, jeven, i +1# j

)) iodd, jeven, i +1=7j

ieven, jodd, j+1#14

W [0]
- S% ﬁ ieven, jodd, j+1=1

(4.85)



A sample of this matrix can be expanded and shown explicitly.

G+ R (51 v‘x//ll[[oo]]) —-B11—-S (51 V\Zl[[oo]]) e G1,m —Bi,m
Bii-S(Sigff) Gu-R(sivy) oo Bim G1m
Yg = : : : :
G Bar e Gun RSB B3 (5 )
I B Gim,2 ©+ Bom =S (Sn ) Gmm =R (SmyEH) |

(4.86)
We wish to use this method to solve the power flow problem for the entire system. As indicated by
(3.52), the phasor voltages at the PV and swing buses are fixed, so V[n] = 0 for n > 0. The germ
solution for the system, in this case, represents the base case power flow solution, so V;[0] is known
Vi. We are only concerned with solving for V;[n] for n > 0. If we expand (4.80) to make it length
2N so it can include the PV and swing bus voltage coefficients, it would have the following form

(where PQ = {1...m} and the remainder of the buses are generator buses).

R (Viln])
S (Valn))

R (Vin[n])
0

0

Clearly, the elements of Vi associated with generators, for n > 0, will be equal to 0. Therefore, we
remove them entirely set Vi back to length 2m. The matrix (4.86) is also of size 2m x 2m, and
it does not contain generator bus entries. It may seem impossible that the higher order coefficients
of load bus voltages can be computed without knowledge of the generator bus voltages, but it
must be remembered that the generator bus voltages are still present in the germ (base) solution,
and are therefore “embedded” in the full solution. Generator voltages are not a function of the
holomorphic parameter s. We may now formulate how to solve for the unknown n** voltage power

series coefficients. In doing so, we pull out the complex conjugate operator from the RHS of (4.84).
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Y4 VR =

R (k1S1Wi[n —1])
-3 (k1S1Win —1])

R (kmSmWm|n —1])

| =S (kS Win[n —1]) |

> WalklVi[n—k]
R| 5= V1 [0]

n—1

> Wi lk]Vi[n—k]
- Slk:l Vv1[0]

n—1

Z Win [k] Vim [n7k1
R | Sm 2= Vi [0]

Zwm 1Vin [n—k]
-S| S

Solving for Vg involves simply inverting the non singular matrix Y

§R(k1S1W1[n — 1])
7% (leﬂ/Vl[n — 1})

R (kS Wn[n — 1])

=S (kS Winn — 1))

R

-

R

-

ZWl Vi [n—K]
S14= AL

ZWl

V1n k]

Si+=

AV

Sm Vo T0]

ZW (k] Vin [n— k)

n—

ZW (K] Vin [n—K]
Sm

Vim [0]

(4.88)

(4.89)

This final equation will allow for the recursive calculation of the holomorphic voltage coefficients.
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Appendix H: Overview of Method

for Critical Bus Voltage Solution

Now that the Continuation Power Flow method has been derived using HELM, the holomorphic

functions can be used to predict the loading levels which will yield some critically low voltage (or

any desired voltage) V.. This is equivalent to choosing an arbitrary bus voltage value and asking

this question: for a given set of loading rates, what level of load will cause a particular bus to reach

the chosen voltage value? To show how this can be accomplished, we start by evaluating the Padé

approximant at s = 0. This corresponds to the complex base load voltage at bus i.

Ng—1

M

Aln] (s™)
n=0

S Bln] (sm)
n=0

‘s:O

(4.90)

For some value of s = z, loading will cause the system to reach a critical voltage magnitude (at bus

1). We evaluate the Padé approximant at s = z and take the magnitude of the expression.

Ne—1
2

2

Ve = n=0

c

S Bln] (sm)
n=0

Aln] (s™)

Z
b

|s:cc

(4.91)

Determining the value of x, though, which will cause the critical voltage V. can be computed through

the following algebraic steps. First, we split the magnitude operator between the numerator and the

denominator, and then we multiply through by the denominator.
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Ncg—1 Nc—1
2 2
> BRI Ve=| >
n=0 n=0

4
Ne—1 Ne—1
2 2
> VeBln)(s")| =
n=0 n=0

Aln] (s™)

Aln] (s™)



0 = [D ARG | VB (")
n=0 n=0

VeB[0] + VeB[1]s + VeB[2]s* + - |

A[0) + A[l]s + A[2]s2 + - | —
| |

Of course, all of the coefficients are complex, so we write them as such.

=)
I

| AJ0] + A[U]s + A[2]s® + -+ | = [VeB[0] + VeB[1]s + VeB[2]s® + - |

VR (AO]) + R(A[1]) s+ ) + (3 (A0]) + S (A[1]) 5+ -)°

~V/(VeR (B[0]) + VR (B[1]) s +-+-)% + (VeS (B[0]) + VeS (B[1]) s +---)?
The radicals can be removed.

0 = (R(AD) +RAL) s +---)* + (S (AL) + S (ALY s +---)?

— (VeR (B0]) + VeR (B[1]) s + )% = (VeS (B[0]) + VeS (B[1]) s + -+ )?

Depending on the level of accuracy desired, the previous expression may realistically extend out to
s%. We therefore seek to come up with a formulaic pattern for applying the exponential operator.

In order to do so, we consider the following example.
(aso +bs! +cs? +ds® + .. .)2

In order to recognize the pattern, we put these coefficients into the following vector C. We segment

the example at ds3.

(aso +bst +cs? + d53)2 = (Clso + Cost + 0352 + C453)2
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Notice that we call C; the first element in C. We now expand the expression and group like

coeflicients.

(C15° + Cas' +C3s> + Cas®)? = [C1C1)s" +
[C1C2 + C2C1] st +
[C1C3 + C2C2 + C3C1] s +
[C1C4 4 C2C3 4+ C3C2 + C4Cq] s> + (4.92)
[C2C4 4+ C3C3 4+ C4Ca] s* +
[C3C4 4+ C4C3] s° +

[C4C4) s+

We put these new coefficients into a vector (o

C.C,

C1C2 + C2Cy
C1C3 + C2Cs + C3C;
C = | C;C4+ C2C3+ C3Cy +C4Cy (4.93)
C3C4 + C3C3 + C4C2

C3C4 + C4C3

C4Cy

We may now write the solution as a simple sum. If s’ is the highest order of s, then n =2t 41 .

n
(Clso + Cast 4+ C3s% + Cys® + C5s4)2 :Z C;si_1 n="7T
i=1

We may generalize the values of C' in the following way.

i
> CiCiti; 1< (t+1)
Ci=< (4.94)
> CjCit1—; (t+1)<i<n
j=i—t

We show the validity of this expression for three test points: C;, C;, and C/7.

1
c, :Z C;Cy_; =C1Cy
j=1

4
C) =) C;Csj = CiCy+ CsCs + C5Cs + C4C
=1
4
Cr=)  €;Cs;=CiCs
j=7-3

134



The expression is shown to be valid. We now return to the original problem, and we assume the

largest power of s is s.

0 = (S‘E(A[O])+%(A[1})s+~~-§R(A[t})st)2+(%(A[O]) (A[l})s+~~~+%(A[t])st)2

+9
— (Ve [R(BIO]) + R (B[1]) s + - - + R (B[t]) 5] )2 — (Ve [S(B[0) + S(B)) s+ + S (BJ]) s'] )2

0 = (&e(A[o})+afe(A[1])s+---afe(A[t])st)2+(%(A[o})+%(A[1])s+---+<5(A[t})st)2

—VZ(R(B[0]) + R (B[1]) s+ - - + R (Bt]) st)z — V2 (S(BIO) +S(B[1]) s+ + S (B]H) st)Q

To solve this problem using the previous results, we note that vectors A and B are analogous to
vector C above. We restate the problem using this notation, where A; = A[0], and st is the highest

order of s. The expression A® indicates the real values of the vector A.

t 2 t 2 t 2 t 2
N o _n e
0 = (E Ai+lsl> +<§ AstZ) —V?(E Bi+1sl> —V§<§ Bfﬂsl) (4.95)
1=0 =0 1=0 1=0

Now we apply the exponential operator and employ AY (and its cousins) which are analogous to

C. Again, the value of n is 2t + 1, where ¢ is the highest exponent of s.

n n n n
0 = Y ARSI AN oV BN ov2Y B (4.96)
=1 =1 =1 =1

Since each sum has the same indices and bounds, we may combine the expression into a single

summation.

0 :Z [A® + AY - vZBY - v2BY| 5! (4.97)
=1

At this point, we notice that the previous expression is simply a polynomial of degree n—1. Therefore,

a numerical solver, such as the “roots” command in MALTAB, can find its roots with ease. In this

case, the meaningful solution will be the single smallest, positive (real) root. This will be the value

of s corresponding to the critical voltage in question.
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