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Abstract

To keep pace with social-ecological disruptions and technological progressions, elec-
trical power systems must continually adapt. In order to address the stability-related
challenges associated with these adaptations, this thesis develops a set of analyti-
cally rigorous yet practically oriented methods for ensuring the continued stability
of modern power systems. By leveraging inference, estimation, and predictive mod-
eling techniques, the proposed methods capitalize on the unprecedented amount of
real time data emerging from modernizing smart grids. For each method, we provide
simulated test results from IEEE benchmark systems.

Newly deployed Phasor Measurement Units (PMUs) are observing the presence
of detrimental low frequency forced oscillations (FOs) in transmission grid networks.
To begin this thesis, we address the problem of locating the unknown sources of
these FOs. To perform source identification, we develop an equivalent circuit trans-
formation which leverages suitably constructed transfer functions of grid elements.
Since FO sources appear in this equivalent circuit as independent current injections,
a Bayesian framework is applied to locate the most probable source of these injections.
Subsequently, we use our equivalent circuit to perform a systematic investigation of
energy-based source identification methods.

We further leverage this equivalent circuit transformation by developing “plug-
and-play” stability standards for microgrid networks that contain uncertain loading
configurations. As converter-based technology declines in cost, microgrids are becom-
ing an increasingly feasible option for expanding grid access. Via homotopic param-
eterization of the instability drivers in these tightly regulated systems, we identify a
family of rotational functions which ensure that no eigenmodes can be driven unsta-
ble. Any component which satisfies the resulting standards can be safely added to
the network, thus allowing for plug-and-play operability.

High-fidelity linearized models are needed to perform both FO source identification
and microgrid stability certification. Furthermore, as loss of inertia and real-time
observability of grid assets accelerate in tandem, real-time linearized modeling is
becoming an increasingly useful tool for grid operators. Accordingly, we develop
tools for performing real-time predictive modeling of low frequency power system
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dynamics in the presence of ambient perturbations. Using PMU data, we develop
a black-box modeling procedure, known as Real-Time Vector Fitting (RTVF), that
takes explicit account for initial state decay and concurrently active input signals.
We then outline a proposed extension, known as stochastic-RTVF, that accounts for
the corrupting effects of unobservable stochastic inputs.

The surrogate modeling utilized by vector fitting can also be applied to the steady
state power flow problem. Due to an unprecedented deployment of distributed en-
ergy resources, operational uncertainty in electrical distribution networks is increas-
ing dramatically. To address this challenge, we develop methodology for speeding up
probabilistic power flow and state estimation routines in distribution networks. We
do so by exploiting the inherently low-rank nature of the voltage profile in these sys-
tems. The associated algorithms dynamically generate a low-dimensional subspace
which is used to construct a projection-based reduced order model (ROM) of the full
nonlinear system. Future system solves using this ROM are highly efficient.

Thesis Supervisor: Luca Daniel
Title: Professor of Electrical Engineering and Computer Science
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Mathematical Notation & Acronyms

In Table 1, we summarize the function and variable notation most commonly used
in this thesis document. In order to engender consistency between chapters, the
notation utilized in this document may at times slightly disagree with the notation
used in associated academic publications.

In this thesis, column vectors 𝑎, 𝑏, 𝑐, ...,𝑥,𝑦 are generally written using bold sym-
bol notation, and matrices A,B,C, ...,X,Y,Z are generally written using bold faced
notation, although certain special matrices are not bold. Column vector functions
...f(·),g(·),h(·)... are generally written with bold faced notation.

Depending on the context, 𝑥̃ may have refer to

1. a standard phasor (e.g. 𝑉 = V𝑒j𝜃), commonly used in power system engineering,
resulting from a quasi-stationary solution of the telegrapher equations;

2. a dynamic phasor (e.g. 𝑉 (𝑡) = 𝑉𝑑𝑞𝑒
j𝜔0𝑡), commonly used in microgrid modeling;

3. a Laplace domain variable: 𝑥̃(𝑠) = ℒ{𝑥(𝑡)};
4. a Fourier domain variable: 𝑥̃(𝜔) = ℱ{𝑥(𝑡)}.

Furthermore, in the context of vector fitting, wide-tilde notation (e.g. ̃︁𝑋) will be
used to indicate deviation from some initial condition: 𝑋(𝑡) = 𝑋(𝑡0) + ̃︁𝑋(𝑡).

Symbol(s) Description

A,B,C, ...,X,Y,Z Matrices, generally (certain special matrices are not bold)
𝑎, 𝑏, 𝑐, ...,𝑥,𝑦, 𝑧 Column vectors of values, generally
...f(·),g(·),h(·)... Column vectors of functions, generally
diag{·} Diagonalization operator, mapping a vector to a matrix
det{·} Determinant operator
E{·} Expected value operator
𝐸 Signed nodal incidence matrix
ℱ{·} Fourier transform operator
fft{·} Fast Fourier Transform operator
Γ, M Transformation matrices: Γ, M ∈ R2×2
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⊙ Hadamard product
I Vector of current magnitudes (AC) or currents (DC)
𝜑 Vector of nodal current injection phase angles
Ĩ Vector of complex nodal currents: Ĩ = I𝑒j𝜑

Ĩ(𝑠) Vector of frequency domain current perturbations
𝑖, 𝑗, 𝑘 Used for indices
j Imaginary unit, where j =

√
−1

⊗ Kronecker product
ℒ{·} Laplace transform operator
𝜆{·} Eigenvalue operator
Ω, 𝜔 Angular frequency variables
𝑅𝑥,𝑦(𝛿𝑡) Cross-correlation of signals 𝑥 and 𝑦 with 𝛿𝑡 time shift
Re{·} = {·}r Real part operator
Im{·} = {·}i Imaginary part operator∑︀

Summation
Σ Covariance matrix
𝑠 Laplace domain complex frequency variable: 𝑠 = 𝜎 + j𝜔

svd{·} Singular Value Decomposition operator
{·}𝑇 Transposition operator
{·}† Hermitian transposition operator
{·}* Complex conjugation operator
V Projection subspace for model order reduction
V Vector of voltage magnitudes (AC) or voltages (DC)
𝜃 Vector of nodal voltage phase angles
Ṽ Vector of complex nodal voltages: Ṽ = V𝑒j𝜃

Ṽ(𝑠) Vector of frequency domain voltage perturbations
𝑌𝑏 Nodal admittance (“Y-bus”) matrix: 𝑌𝑏 = 𝐸𝑇𝑌𝑙𝐸 + 𝑌𝑠

𝑌𝑙 Diagonal line admittance matrix
𝑌𝑠 Diagonal shunt admittance matrix
𝒴(𝑠), 𝒴(𝜔) Admittance of AC grid components, in 𝑠 and 𝜔 domains
1 Identity matrix of appropriate size

Table 1: Commonly Used Notation

26



In Table 2, we summarize the acronyms most commonly used in this thesis document.
The bolded acronyms are used especially often.

Acronym Description

AC/DC Alternating Current/Direct Current
APPF Accelerated Probabilistic Power Flow
APSE Accelerated Probabilistic State Estimation
AVR Automatic Voltage Regulator
AWG Additive White Gaussian
DEF Dissipating Energy Flow
DQR Dissipative with respect to Quadratic supply Rate
DSE Dynamic Subspace Expansion
DWE Dynamic Ward Equivalent
GNvQR Gauss-Newton via QR-factorization
FO Forced Oscillation
FRF Frequency Response Function
FDVF Frequency Domain Vector Fitting
ISONE Independent System Operator of New England
L(R)HS Left (Right) Hand Side
LSD Local Spectral Deviation
LTI Linear Time Invariant
MAP Maximum A Posteriori
MEPS Modern Electric Power Systems
M(S)IM(S)O Multi (Single) Input - Multi (Single) Output
M(k)W Mega (kilo) Watt
MOR Model Order Reduction
NSBPF Neumann Series Based Power Flow
OU Ornstein-Uhlenbeck
PMU Phasor Measurement Unit
PPF Probabilistic Power Flow
PSS Power System Stabilizer
RMS Reduced Model Solver or Root Mean Square
ROM Reduced Order Model
RMSE Reduced Model State Estimator
RTVF Real-Time Vector Fitting
RWNP Relaxed White Noise Process
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SER Signal to Error Ratio
SNR Signal to Noise Ratio
sRTVF stochastic-Real-Time Vector Fitting
TDVF Time Domain Vector Fitting
TVE Total Vectro Error
VF Vector Fitting
WECC Western Electricity Coordinating Council
ZIP Constant Impedance(Z)-Current(I)-Power(P) Load Model

Table 2: Commonly Used Acronyms
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Chapter 1

Introduction and Motivation

Modern electric power systems (MEPS) are an engineering marvel, representing over
140 years of incremental advancement in design, construction, and operation. In or-
der to keep pace with the technological advances and social-ecological challenges of
each new generation, these systems require continual updating and modernization.
This task is made all the more challenging due to the fact that MEPS operate on
highly disparate timescales; such timescales range from the microsecond effects of elec-
tromagnetic transients and power electronic switching to the decade-scale timelines
associated with expansion planning and generation capacity procurement [105].

Over the last two decades, a variety of factors have lead to the severe disruption
of MEPS’ conventional operating paradigm. The primary factors contributing to this
disruption include the following:

• a dramatic increase in grid-scale renewable energy penetration and a corre-
sponding decrease in traditional fossil-fuel based generation [103, 127];

• the advent of new Smart Grid technologies [173];

• the increased popularity and reliance on microgrid systems [172, 83];

• the increasing electrification of the transportation sector [20, 97];

• and the distributed energy resources (DERs) which allow traditional consumers
to act as “pro-sumers” [70, 173].

Although each of these factors represents an opportunity for enhancing the efficacy
and sustainability of MEPS, they also represent new challenges associated with main-
taining system stability. The term stability is often used loosely in the literature, but
the IEEE/CIGRE Joint Task Force on Stability Terms and Definitions indicates that
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power system stability refers to “the continuance of intact operation following a dis-
turbance” [104]. The disturbance type may range anywhere from typical ambient load
switching to a severe line fault.

Despite the new stability-related challenges, the roll-out of new Smart Grid tech-
nologies is accompanied by new opportunities for system operators to significantly
enhance system stability. In particular, the deployment of Phasor Measurement Units
(PMUs) [141], micro-PMUs (𝜇-PMUs) [181] and Advanced Metering Infrastructure
(AMI) [136] are increasing system observability in considerable ways. PMUs are de-
vices which can provide time synchronized measurements of a variety of grid signals
at high sample rates (30 to 60 Hz); these measurements are aggregated at Phasor
Data Concentrators (PDCs) [45] and then relayed back to the system operators in
near real-time. Typically, PMUs are capable of measuring voltage and current pha-
sors (magnitude and phase), frequency and rate of change of frequency. Active and
reactive power flows and injections are computed directly from the voltage and cur-
rent data. While PMUs have seen widescale deployment in power systems for almost
a decade now, actual real-time uses of these data stream are only now emerging.
One newly celebrated example is the real-time control of the so-called Pacific DC
Intertie (PDCI) line in the Western United States. As described in [142], the project
uses real-time PMU data to perform active power modulation (up to ±125 MW)
on the intertie line in order to increase the damping ratio associated with a poorly
damped system mode. On average, only 82ms lapse between the time when the PMU
time-stamps the data and when the closed loop feedback controller (which is located
hundreds of miles away) performs modulation of active power. Such control would
never be possible without synchrophasors.

While PMUs are typically located at high voltage transmission substations, 𝜇-
PMUs are placed at distribution feeders and, potentially, throughout the distribution
network. Due to smaller phase angle differences between nodes and the higher degree
of process noise (load switching), 𝜇-PMUs are engineered to have a higher accuracy
than transmission grade PMUs [181]. AMI is defined as the “integrated system of
smart meters, communications networks, and data management systems that enables
two-way communication between utilities and customers” by the DOE [136]. The
smart meter devices measure load usage at the customer interface. They are typically
capable of relaying active and reactive power usage along with voltage magnitude,
current magnitude and basic power quality data back to utilities in 5, 15, 30, or
60 minute intervals. As of 2018, approximately 86.8 million smart meters had been
installed across the US [6].
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1.1 An Inverse Problem Framework for Data-Driven

Control of MEPS

The massive amounts of real-time data being generated by PMUs, 𝜇-PMUs and smart
meters not only provide direct observability of previously unobservable system facets,
but they also allow for the formulation of previously unimagined inverse problems. In
formulating an inverse problem, the inherent objective is to reconstruct some aspects
of the particular “model”1 which generated some set of observed measurements [86,
88]. Much of this thesis focuses on formulating inverse problems which exploit these
newly available measurement data sets in new ways. The ultimate purpose of posing
and solving these inverse problems is to transform potentially unused data streams
into, so-called, actionable information. Such information can allow system operators
to make dispatch and control decisions which enhance the stability of the network.
The relationship between the contributions of this thesis and the eventual derivation
of this actionable information (as used by a controller) are graphically portrayed in
Fig. 1-1. At a high level, this operational paradigm can be considered a sort of
data-driven control [28] procedure, since control decisions are based on the continual
identification or characterization of the plant model. If deployed properly, this control
can have a stabilizing effect on the system. Such control strategies, though, ultimately
hinge on the ability of an inverse problem solver to identify useful2 system models.

The central premise of this thesis is that inference, estimation, and prediction
strategies can be applied to characterize useful power system models.

The resulting models can be used, as in Fig. 1-1, to potentially enhance the stability
of MEPS. As shown in this figure, though, this thesis focuses exclusively on model
characterization; accordingly, performing analysis on the derived models to extract
actionable information or develop control strategies is beyond the scope of this thesis.

While a useful construct in general, the data-driven control of Fig. 1-1 faces a
number of practical challenges, many of which will be reviewed as specific problems
are introduced later in this chapter. Motivated by the overarching application of
data-driven control, though, the following sections of this chapter introduce four
fundamental problems emerging in MEPS. The first, third, and fourth problems can

1While inverse problems are often concerned with physical (i.e. physics-based) model reconstruc-
tion, parts of this thesis will also consider surrogate, or “black-box”, models as well.

2The term “useful” is defined relative to the application (i.e. data-driven control from Fig. 1-1)
and the ultimate goal of the application (i.e. power system stability).
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Figure 1-1: Contextualization of the inverse problems which are posed and solved in
this thesis. As portrayed, the inverse problems are informed by a set of measured data
and potentially some prior modeling information. The solver outputs a model char-
acterization which is eventually used to create actionable information for a controller
(human or automated). This controller then acts on the physical power system. The
overall operational paradigm is an example of data-driven control.

be classified as inverse problems which fit neatly into the framework presented by
Fig. 1-1, while the second problem is more suitable for operational planning rather
than real-time operation.

• In Section 1.2, we introduce the problem of locating the sources of low fre-
quency forced oscillations in transmission systems, given measured PMU data
from throughout the network.

• In Section 1.3, we introduce the problem of identifying a family of rotational
functions which guarantee small-signal stability for microgrid networks. The
resulting contributions of this chapter are theoretical in nature, rather than
algorithmic (as they are in the other chapters).

• In Section 1.4, we introduce the problem of inferring a non-unique set of
surrogate model parameters for real-time predictive modeling of power system
dynamics, given measured PMU data from the terminals of a system element.

• In Section 1.5, we introduce the problem of estimating the probabilistic opera-
tional state of an electrical distribution system network, given measured (in the
case of probabilistic state estimation) or forecasted (in the case of probabilistic
power flow) data about the loads in the network.

For each of the posed problems, a corresponding literature review is provided, and
the potential impacts of the problem are outlined. Finally, in Section 1.6, we provide
a brief outline of the remainder of this thesis document.
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1.2 Forced Oscillation Source Location

With the recent widescale deployment of PMUs across the US transmission grid [5],
system operators are becoming keenly aware of the pervasive presence of low frequency
oscillations. Generally, low frequency oscillations are either due to natural modes,
attributed to poorly tuned control settings and large power flows across weak tie
lines, or forced oscillations (FOs), which are caused by extraneous disturbances. FOs
generally refer to a system’s response to an external periodic disturbance [67]. Such
external inputs may be related to a broad range of causes [3, 67], such as faulty
controllers, turbine vibrations, or cyclical loads [180, 155, 199]. A new report [116]
published by the Independent System Operator of New England (ISONE) highlights
several recent causes of FOs observed in their 345kV transmission network:

• On January 11th of 2019, a 0.25 Hz oscillation of up to 50 MW (peak-to-peak)
was observed in the ISONE network for 17 minutes. The cause was a faulty
power-imbalance controller in a combined cycle power plant in Florida (more
than 1000 miles away). Since the oscillation frequency was close to a resonant
mode, oscillations of up to 200 MW were observed across the entire Eastern
Interconnect.

• On April 7th of 2019, a 0.1 Hz oscillation, 5 MW in magnitude, was observed
in the ISONE network for 10 minutes. A large combined cycle generator in the
ISONE system was eventually identified as the source, and the FO was deemed
to be caused by a “pin hole in the primary gas inlet pressure regulator boot of
the upstream gas pressure regulator.”

• From January 11th through the 20th of 2020, a 0.2 Hz oscillation appeared
numerous times in the ISONE network, having a magnitude of around 10 MW.
The source of the FO was a large generator in the New Brunswick region.
Remarkably, subsequent investigations determined that the oscillations in the
generator were caused by a change in the quality of the natural gas that was used
to fuel the generator. Prior to January 11th, the supply source had switched
to an offshore gas field. In the end, turbine governor control was to blame:
“Governor control was optimized for regular gas quality but became suboptimal
for the new gas causing oscillations when the generator was operating in the
135-140 MW output range.”

The existence of FOs reduces the quality of electric power and has potential detri-
mental effects on various equipment [157, 180]. One of the most sever examples in
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modern times of the potential devastating effects of oscillations in MEPS was an
incident at the Sayano-Shushenskaya hydro power in 2009 [106]. This incident was
ultimately caused by fatigue failure of the turbine cover of one of the generators, and
the ensuing disaster lead to the death of 75 people and a massive blackout. Before the
mechanical vibrations of the rotor caused the generator to effectively explode, there
were long periods of low frequency vibrations (≤ 1.5 Hz), as recorded by local seismic
station sensors. If such low frequency oscillations could be sensed by power grid oper-
ators and responded to in real time, future incidents similar to Sayano-Shushenskaya
could, at least potentially, be avoided.

Whenever a disturbance occurs at the frequencies close to one of the natural
system modes, a resonance condition may lead to significant amplification of the
oscillation source amplitude; thus, a relatively small perturbation on one bus can
cause rather large power swings in different locations around the system. A classical
example of this effect is the 2005 WECC disturbance, where a reasonably small 20
MW oscillation at the Nova Joffre co-generation power plant in Canada resonated
with one of the WECC’s main inter-area modes. This resulted in a 200 MW power
oscillation on the Oregon-California intertie [157].

Accordingly, there is a need in the MEPS community for the development of
methods which are capable of using on-line PMU data to trace the source of a FO.
Locating the sources of FOs remains a challenging task due to their sporadic na-
ture, speed of propagation, and inability to be predicted by the system operators’
dynamical models (i.e. FOs are extraneous in nature, so they cannot be predicted
apriori). Across academia and industry, it is an accepted fact that designing control
methods for the specific purpose of damping forced oscillations is impractical [122],
since FOs are inherently problematic and should be dealt with at their sources3. In-
stead of closed loop control, disconnection of the identified source with subsequent
investigation of the cause of the disturbance is the universally accepted solution to
the problem. Before applying any source location procedure, though, the type of ob-
served disturbance has to first be classified. To differentiate between FOs and other
types of disturbances, a method based on statistical signatures of different types of
oscillations was proposed in [188]. Similarly, [135] uses spectral analysis of PMU data
to “trigger” a FO warning. The authors then suggest using statistical tools (pattern
mining and maximal variance ratios) from on-line generator SCADA data to deter-
mine the oscillation source. If oscillation magnitudes are low and signal noise is high,

3The previously mentioned PDCI controller has actually been found to somewhat effectively
damp FOs, as reported in [190], although this is not the intended purpose of the controller.
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[209] proposes using the self-coherence spectrum of a PMU signal and its time shifted
version to perform FO detection/classification.

A variety of source identification techniques have been developed with varying
levels of success [29, 7, 135, 10, 123, 39, 38]; many are outlined in a recent liter-
ature survey [185], where the main requirements for such methods are also stated.
A set of test cases for validating different source location methods is presented in
[117]. These cases were developed in coordination with IEEE Task Force on Forced
Oscillations, and they allow for a standardized examination of all source detection
algorithms. In [10], phase coherency is used to identify groups of generators which
swing together. The source is identified as the generator in the source group which
is providing the smallest contribution to the overall damping. This will correspond
to the generator whose rotor oscillation phase is leading all other source group ro-
tor oscillation phases. In [29], eigenvalue decomposition of the linearized system’s
state matrix is used in conjunction with the FO’s measured characteristics to per-
form source location identification. The authors of [125] employ machine learning
techniques, via multivariate time series analysis, to perform source identification; all
off-line classifier training is based on simulated data. A fully data driven method,
which employs convex relaxation to optimally locate sparse FO sources, is introduced
in [92]. Due to the characteristically narrow bandwidth of FOs, other authors have
embraced frequency domain techniques. In [7], the pseudo-inverse of a set of system
transfer functions are multiplied by a vector of PMU measurements to yield a FO
solution vector.

An important class of source location methods, which are termed the hybrid meth-
ods in [185], leverage both a known system model and measured PMU data. Demon-
strated in [194] and [114], these methods use measured PMU signals as inputs for a
power system model. After simulating this model, the time domain model outputs
are compared with their corresponding measured PMU signals. Significant deviation
between the model predictions and the PMU measurements may indicate the presence
of a FO. These types of “playback” methods are also used for model validation. Model
based source location algorithms incorporate the unfortunate drawback of solution
accuracy being constrained by the accuracy of the model parameters used in the
analysis. Purely data driven approaches, on the other hand, do not leverage known
system structure and dynamics. Others have applied Bayesian analysis to MEPS in
past. For example, [22] used a Bayesian particle filter for power plant parameter
estimation, and [140] solved a maximum a posteriori (MAP) optimization problem in
the time domain to perform system parameter identification.
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Of the many source location techniques currently available in the academic mar-
ketplace, the so-called Dissipating Energy Flow (DEF) method has enjoyed some
of the most successful testing results, both in simulation environments [122] and in
real-time applications [121] in the ISONE and WECC networks. The method was
originally developed by Chen et al. [35] as the Transient Energy Flow method, but
its underlying mathematics leverage the Lyapunov functions from [177]. The DEF
method, which was developed under the assumptions of a lossless network and con-
stant power loads, tracks the system-wide flow of so-called “dissipating energy” in
order to locate the FO source. One of the main advantages of this method is that it
tracks the dissipating energy flow in all lines where PMU data is available, thus being
naturally model independent.

The primary challenge to reliable DEF performance is the contribution of dissipat-
ing energy from non-FO sources, such as lossy transmission lines, lossy or negatively
damped loads, and generator dynamics dominated by non-passive controllers. This
phenomena has been evidenced in simulation [38] and in real application at ISONE.
An actual example of this contribution may be found in Fig. 1 of [40]. If these
contributions are large enough, the FO source can appear to be a dissipating energy
sink and the DEF method can fail. Despite its inadequacies, the DEF’s excellent
performance in real-time application at ISO New England strongly implies that fur-
ther research should be performed in order to more systematically characterize the
method. Shortcomings of the DEF method have been analyzed in [36], and [40] has
recommended using passivity theory to interpret the method from a new mathemat-
ical perspective, but no theoretical methods have been devised for testing how the
DEF method will perform in an arbitrary network. Such testing is essential in order
to ensure that the DEF can perform adequately in new environments, such as in mi-
crogrids where “R/X” line ratios are high and voltage control is fast, or in networks
that have particularly resistive load pockets. To make such predictions, a systematic
framework is needed in order to thoroughly study the DEF.

Due to the plethora of challenges associated with locating the sources of FOs in
real-time, and in the context of the provided literature review, we offer the following
conclusions which guide the FO-related research in this thesis

• The MEPS community needs a more systematic approach to analyzing, properly
characterizing, and reliably locating the sources of FOs.

• Due to the quickly emerging changes of MEPS, methods which perform these
tasks and do not heavily rely on strong modeling assumptions (especially ones
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which were more justifiable in the context of classical grid architecture), but do
leverage known physics-based modeling priors, are of particular value.

• Furthermore, due to the ubiquity of energy-based FO source location methods
which are currently being used by ISOs, methodologies which can predict the
conditions under which energy-based source location methods will succeed or
fail are needed.

1.3 Small-Signal Stability Standards for Microgrid

Networks

In academia, industry, and defense, microgrids are becoming an increasingly popular
topic [107]. According to the DOE, a Microgrid may be defined as [172]

a group of interconnected loads and distributed energy resources within
clearly defined electrical boundaries that acts as a single controllable entity
with respect to the grid. A microgrid can connect and disconnect from
the grid to enable it to operate in both grid-connected or islandmode.

Advances in power electronic technologies have lead to a significant decrease in re-
newable energy generation costs: this has inspired discussions about splitting certain
existing distribution grids into autonomous systems. Subsequently, there has been
significant progress in the development of control architectures for power electronics-
interfaced generation, further allowing for flexible microgrid operation [146, 208]. In
the following two subsections, both DC and AC microgrid stability-related research
is reviewed.

1.3.1 DC Microgrids

Recent advances in power electronics technologies and the general trend towards
renewable energy sources have lead to increased interest in DC grids [145, 98]. Small-
scale DC microgirds have been in use for several decades already, mainly as au-
tonomous electric systems on board of vehicles [56]. As such, the configuration of
these microgrids was fixed and well planned for the exact operating conditions which
were known in advance. On the other hand, DC microgrids with an “open” structure,
capable of being expanded and reconfigured while remaining stable for a broad range
of loading conditions, have mostly been out of the scope of academic research. In
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part, this is justified by the fact that, currently, the majority of microgrids are using
an AC interface for power distribution, even if all the sources and loads are naturally
DC. However, fully DC microgrids can become an economically feasible solution for
supplying power in remote communities.

Unlike in AC grids where a substantial part of the load is of the electro-mechanical
type, loads in DC grids are mostly represented by power electronics converters with
tight controls to achieve flat voltage at their outputs [58]. This leads to a constant
power load (CPL) behavior on the input within the control loop bandwidth, which
is regarded to be one of the main sources of instabilities in DC grids. The origin
of the instability is often related to the, so-called, negative incremental resistance
introduced by CPL; a number of methods for stability assessment are based on such
representation. Recent reviews [170, 153] present a comprehensive classification of
the existing stability criteria and stabilization methods for DC grids.

Recently, the problem of stability assessment for CPL-based microgrids has at-
tracted substantial attention from the controls community [156, 168, 207, 16, 43]. Pre-
vious works on the subject [18, 94, 32] have demonstrated that the problem of linear
and transient stability of DC microgrids with CPL can be addressed using Brayton-
Moser mixed potential approach [26, 96]. However, stability conditions derived under
the conservative CPL modeling assumption may lead to excessive constraints on net-
work configuration and installed equipment, and they neglect the complex dynamical
behaviour of the controllers which regulate these loads. In reality, regulated power
converters act similar to CPL only within their control loop bandwidth [151]. Accord-
ingly, methods which explicitly account for the finite bandwidth of load controllers can
potentially provide less restrictive stability conditions. However, dealing with load
models that are more complex than a simple CPL requires development of rather
specific techniques.

Traditionally, the power electronics community has relied on a number of different
impedance based stability conditions. Most of them consider the minor loop gain,
which is the ratio of the source output impedance to the load input impedance. The
celebrated Middlebrook criterion [126], originally proposed for input filter design, is
based on a small-gain condition for minor loop gain, demanding its absolute value to
be less than unity for all frequencies. While a rather conservative method, it only re-
quires knowledge of the absolute values of impedances over the whole frequency range.
A less conservative Gain-Margin Phase-Margin criterion [191] allows the Nyquist plot
of the minor loop gain to leave the unit circle provided there is a sufficient phase
margin. Another method - the opposing argument criterion - is based on conditions
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imposed on the real part of the minor loop gain [62]. The main advantage of this
method is that it can be applied to multi-load systems, since the contributions from
each individual load can now be simply added together. Finally, the least conserva-
tive methods are based on the so-called energy source consortium analysis (ESCA)
[176] and the similar root exponential stability criterion (RESC) [175]. Both offer the
smallest forbidden region for the minor loop gain of all the existing methods.

Most of the described stability assessment methods are primarily concerned with
single-source single-load systems and a possible destabilizing interaction between the
impedances of corresponding components. Under certain conditions, it could be pos-
sible to generalize some of these methods by attributing network components to either
loads or sources and changing the corresponding effective impedance. In all the cases,
the explicit knowledge of both the models of all the system components and the net-
work configuration are required to perform the stability assessment. However, in
the case of the aforementioned “open structure” DC grids, not all of the parameters
can be exactly known. Moreover, running a separate stability test upon every grid
reconfiguration can be practically infeasible. Thus, there is the need for stability
assessment methods that can be realized under limited knowledge about the system
parameters and/or configuration. In this thesis, we have made a step towards offering
a “plug-and-play” approach for DC grids, where certain general criteria can be issued
for both loads and network elements that can guarantee stable operation of the full
system under arbitrary grid configurations. To achieve this end, we develop a special-
ized procedure that allows for the overall system stability assessment to be reduced
to a separate consideration for individual load and line impedances, thus resulting in
completely decentralized stability criteria.

1.3.2 AC Microgrids

It was quickly realized that control methods which were standard for large scale AC
MEPS have rather limited applications in microgrids due to differing stability con-
straints [17]. Moreover, modelling approaches (e.g. modelling based on time-scale
separation) routinely used for conventional MEPS appeared to be inadequate for mi-
crogrids, which demand new modeling techniques [134]. Due to the characteristic dif-
ferences between large scale conventional power grids and microgrids, new approaches
and methodologies are necessary for certifying microgrid stability. Relevant stability
definitions and state of the art methodologies for AC microgrids are reviewed in [60]
by the IEEE Task Force on Microgrid Stability Definitions, Analysis, and Modeling.

39



It is generally possible to employ full-scale dynamic modeling for stability analysis
of microgrids, directly calculating the eigenvalues of the state matrix for any specific
operating point. This is done in [17], where the stability of a droop control dominated
microgrid is analyzed via root locus. However, such an approach assumes the full
knowledge of system configuration which is much less likely for a microgrid than for a
conventional MEPS. Certifying the stability of microgrid systems can be challenging
due to the lack of information on exact values of system parameters. Moreover, per-
forming full-scale stability analysis for every possible microgrid configuration is most
likely economically, technically, and numerically inconvenient. Authors in [184] de-
veloped a low-dimensional model for inverter-based microgrids which allowed for the
pinpointing of the main sources of instabilities and paved the way towards develop-
ment of completely decentralized interconnection rules for such systems. However, the
methods still rely on rather specific dynamic models of system components (namely,
droop-controlled inverters) and assumed at least partial knowledge about the system
configuration. Moreover, stability certificates formulated in [183], while being decen-
tralized, depend not only on the settings of the system components, but also on their
interconnection.

The celebrated concept of dissipative dynamic systems [192, 193] allows for formu-
lation of stability certificates for an entire system through the separate consideration
of its components: if every component of the system is dissipative, then the whole
system is also dissipative, and therefore stable, irrespective of the way components
are interconnected. Specific forms of dissipativity [1] have allowed the formulation of
rather simple, although not always easily realisable, constraints on input admittances
of power system components [154, 81, 82]. The advantage of such an approach is that
input admittances of individual components do not have to be known from a model,
but can simply be measured. However, it is not straightforward to apply the method
to components that are not dissipative and cannot be made so by simple adjustments
of their control settings. Researchers have advocated for a passivity-based approach
for microgrid stability certification. In [202], an active stabilization (control) strategy
was proposed which would enforce passive terminal behaviour of all interface con-
trollers. Once engineered to behave passively, the system was guaranteed to be stable
for an arbitrary interconnection of converters. The robustness of such passivity-based
control laws was analyzed in [14].

There is, therefore, the need for simple but reliable stability certificates that can
be routinely used for a wide class of AC microgrid configurations. In an ideal oper-
ating paradigm, standards could be developed for typical microgrid components that
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will allow stable operation under arbitrary interconnections. Such a system would
provide a significant step towards realizing the so-called “plug-and-play” operation of
a microgrid [53].

1.4 Real-Time Predictive Modeling of Low Frequency

Power System Dynamics

Due to the aggressive deployment of Wide Area Monitoring Systems (WAMS), a
deluge of time series data streams are emerging from modernizing smart grids. For
instance, as of 2017, Operating Procedure No. 22 specifies that all generation above
100MW in the ISO New England system must provide Phase Measuring Unit (PMU)
observability at the point of interconnection [178]. Similarly, the 2018 Nodal Oper-
ating Guide specifies that all new generators above 20MVA in the ERCOT (Texas)
system must provide PMU observability [57]. In order to both capitalize on these
data streams and enforce effective dynamic security assessment (DSA) in the face of
a rapidly modernizing energy landscape, the North American Electric Reliability Cor-
poration (NERC) recently implemented the so-called MOD-033-1 directive in July of
2017 [150]. Not only does “MOD33” mandate the continual development of static and
dynamic network planning models, but it also requires that the simulated response
of these models be compared to actual time series data collected in the network to
validate their accuracy [9]. Associated procedures must also resolve model predic-
tion aberrations. Traditional “staged” testing of generator models can be costly and
inconvenient, because the generator must go offline [109]. Thus, performing model
tuning and validation online is particularly valuable.

In this thesis, we use the phrase “predictive modeling” to generally refer to the
procedure of using PMU data to construct an input/output model of some underlying
dynamics; this model can then be used to predict future input/output behavior of the
system. Naturally, “real-time predictive modeling” refers to preforming the modeling
online, i.e. in real time. In the MEPS literature, there exist two salient applications
of real-time predictive modeling: (i) individual generator4 monitoring, and (ii) wide-
area modeling. Both of these situations, for example, are showcased in Fig. 1-2.
In this figure, we present the hypothetical perspective of a system operator, ISONE.
Panel (a) on the right shows a connection to an individual generator inside the ISONE

4Predictive monitoring of loads is also a potentially useful application, as exemplified by the load
modeling failures which contributed to the August 10, 1996 blackout in the Western US [102]. This
application, though, presents additional challenges which are beyond the scope of this thesis.
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Figure 1-2: Predictive modeling opportunities for system operators: closed loop gen-
erator systems (panel (a) on the right) and wide-area interconnections (panel (b) on
the left).

system. Since the generator is observable via PMU, ISONE may want to use predictive
modeling techniques to build or update real-time models of this generator system.
Panel (b) on the left, however, shows a series of connections to the neighboring
NYISO system. Assuming these “tie lines” are all observable via PMUs, ISONE may
want to use the data to build a dynamic equivalent of the NYISO network. Indeed,
wide-area modeling was the original problem which motivated the predictive modeling
techniques developed in this thesis. The following subsections briefly introduce both
generator and wide-area predictive modeling approaches in the literature.

1.4.1 Generator Modeling

In the electromechanical frequency range, power system dynamics are still domi-
nated by synchronous generators [127]. A wealth of literature exists on the non-
linear physical modeling of these generators and their associated high-order con-
trollers [105, 158, 115]. MOD33-flavored tuning and validation of these models,
though, still faces a variety of practical obstacles; these include the exclusion of
unmodeled dynamics, measurement noise, uncertain physical parameter values, un-
known controller changes, and, in the limiting case of linearized modeling, residual
nonlinearities and drifting equilibrium points. In recent years, a variety of “grid-scale”
methods have been proposed for the purpose of validating these generator + controller
models in the presence of strong network perturbations [150, 64, 92, 109, 93, 195].
Most of these perform some variation of Kalman filter-based parameter tuning via
“play-back” simulation.
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1.4.2 Wide Area Monitoring

With the increased observability provided by WAMS, system operators are begin-
ning to have complete real-time observability of the connections (i.e. tie lines) be-
tween their respective “internal” regions and the “external” regions to which they are
tied. With this complete observability comes the opportunity to infer the underlying
input/output dynamics of these neighboring systems. Thus, creating a dynamical
equivalent of these external systems is appearing increasingly realistic. Using ad-
vanced system identification (SysID) techniques, high sample rate PMU data can be
used to construct an equivalent black-box dynamical model. While most commercial
MEPS simulators, such as PSS/E and the DSATools suite, have external system re-
duction techniques built directly into the software package, the resulting analytical
models can often provide poor predictive capabilities due to real-time changes in the
system which the system operators are not aware of [204, 120].

Since PMU data can only reconstruct dynamics of up to ∼ 8 Hz, the dynamics
of interest are primarily electromechanical in nature. There is a fairly vast liter-
ature devoted to (i) the estimation of electromechanical modes in MEPS and (ii)
the creation of linear dynamical black-box models from wide-area time series data
[34, 61, 46, 186, 210, 78, 79, 143, 8]. Excellent reviews on the topic are provided
in [144, 50]. One of the most popular “modal identification” methods, known as Prony
analysis, was first applied to power systems in the Pacific Northwest in 1990 [84]. The
method uses so-called transient “ring-down” data in order to linearly approximate the
frequency, phase, amplitude, and damping of the different system modes. Prony-
type methods are primarily applicable when the system transient response is strong.
Authors in [143] collect 50 minutes of ambient data followed by transient data as-
sociated with the controlled application of a 1400 MW brake resistor. They show
that Prony analysis of the transient data and Wiener-Hopf linear prediction applied
to the ambient data were both able to predict the four dominant system modes and
their respective damping ratios. Subsequent publications further refined these meth-
ods [189, 49], but most of them were focused on identification of system modes (i.e.
poles), rather than the full transfer functions.

More recent work has focused on building actual, but model reduced, input/output
transfer functions from measured terminal data, since these methods are generally
less developed. Authors in [34] propose aggregation techniques based on coherency
methods in order to construct simple dynamic equivalents of wide areas; parame-
ters of these equivalent reductions are then inferred. Using a simple autoregessive
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with exogenous input (ARX) model, [33] develops a process for computing a dynamic
equivalent transfer function with simulated or measured data. Voltage magnitude and
frequency are chosen as inputs, whiles active and reactive power flows across lines are
chosen as outputs. Each tie line, though, is considered and modeled independently.
Simple MIMO transfer function approaches are developed in [205, 204], where poles,
zeros, and model order are iteratively perturbed based on a least-squares numerical
procedure inside a standard MATLAB toolbox. In each of these papers [204, 205, 33],
measurement noise and process noise (i.e. load noise) are not considered, and dynam-
ics are inferred after a transient switching event rather than from ambient data. For
online oscillation damping control tuning, [111] uses a lower order autoregressive mov-
ing average exogenous (ARMAX) model for MIMO system identification. In [210],
transfer function identification is performed on PMU data, but the modes of the sys-
tem are assumed known apriori, and “arx.m” from MALTAB is used to perform the
system identification.

1.4.3 Inadequacy of Existing Methods

The vast majority of the proposed modeling and validation algorithms are charac-
terized by (at least one of) two salient features. First, they are parameterized by a
physical prior; that is, they leverage the structure of a given physical generator of sys-
tem model which can assumably be tuned to explain the full set observed dynamics.
Second, these algorithms are typically designed to be deployed in the presence of a
sufficiently strong network perturbation (e.g. ground fault). Together, these assump-
tions allow for a variety of helpful assumptions, such as the neglecting of initial state
decay and the availability of a high-fidelity prior. Such algorithmic features, although
widespread, can be burdensome if the prior model is incomplete, or if real-time model
updates are desired5 and no sufficiently recent perturbation events have occurred.

Predictive modeling algorithms which are free from both of these limitations can
provide a variety of advantages. If the modeling of generator systems can be per-
formed by a parameterized “black box” approximation, then the associated algorithm
will be freed from the constraints of a potentially erroneous, or completely unknown,
prior model. Additionally, if this algorithm can be implemented in the face of ambi-
ent, rather than severe, operating conditions, then updates can be performed on the
fly, and otherwise unused PMU data can be transformed into actionable information

5Real-time updates can be desirable for a variety of reasons, such as in situ controller tuning or
operational decision making. As portrayed in Fig. 1-1, this thesis will not explore these applications,
but assumes they are potentially valuable for operators.
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(see Fig. 1-1). Of course, since ambient excitation typically under-excites the non-
linear dynamics of the true physical model, linearized modeling is the most tenable
choice for performing dynamical inference in the presence of ambient fluctuations.

Recently, vector fitting approaches have been leveraged to construct power system
models from measured field data. In [15], authors use the numerical Laplace transform
to push the problem into the frequency domain. Next, vector fitting and relative
dominant-pole measurements (RDPMs) are iteratively leveraged to build estimations
of the system modes. Similarly, [162] combines Time Domain Vector Fitting (TDVF)
and the popular ring down analysis to develop a novel modal estimation routine. In
a more generic application, [95] uses out-of-the-box TDVF to construct a SISO linear
model of a turbine governor system from measured PMU; droop gain values are then
captured from the derived model.

Of course, the black-box identification of dynamic models from time series data
goes far beyond power system applications and is regarded as a well established
field [73, 31]. As noted, one prominent approach is the TDVF scheme [71, 72, 73].
This approach is applicable for estimating rational models of linear systems, starting
from the time domain samples of input and output data. Unfortunately, canonical
TDVF has the following restrictions:

• The system must be at rest when the data acquisition begins. This guarantees
that the input and output data are related by a linear transfer function with
no contribution from the zero-input (i.e. initial state decay) response.

• For a MIMO system with 𝑃 ports, only separate modeling of each column of
the transfer matrix is possible. This limitation requires that only one of the 𝑃

input components is acting on the system during the separate modeling periods
for each transfer matrix column.

Since online modeling requires the unknown system to be characterized (i) during
its dynamic evolution and (ii) in the presence of concurrently acting inputs, the
above limitations often make TDVF unsuitable for real-time MIMO applications.
Accordingly, there exists a need in the MEPS community for the further development
of methods which are capable of performing black-box, online, input/output predictive
modeling of both generator and external wide area systems from ambient data in
numerically expedient ways; such methods are generally lacking.
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1.5 Probabilistic Power Flow and State Estimation

in Electrical Distribution Networks

While the transmission grid is vitally important for transporting electrical power
long distances, the distribution networks facilitate the final step of power delivery
to homes and businesses. The ongoing democratization of energy is causing a series
of fundamental changes to electrical distribution grids. Distributed energy resources
(DERs), such as Tesla powerwalls and rooftop photovoltaic systems, automated sens-
ing devices equipped with telemetry capabilities, such as 𝜇-PMUs and smart meters,
and active loads, which are capable of reactively responding to real-time pricing sig-
nals, are all majorly disrupting the standard operating procedures of distribution
networks [21, 101]. Accordingly, distribution system operation and control are receiv-
ing much more attention in the MEPS research community than they have in the
past.

All of the aforementioned changes are contributing to an increasing amount of
uncertainty in distribution networks. Due to this increase in uncertainty, so-called
probabilistic methods are becoming increasingly popular tools for system planning
and, in the future, system operation. In this thesis, we consider two problems which
both seek to ease the computational burden associated with the deployment of prob-
abilistic methods.

• First, we consider the probabilistic power flow problem, where forecasted load
profiles are the source of uncertainty.

• Second, we consider the probabilistic state estimation problem, where measured
load profiles, lines flows, and voltage magnitudes are the source of uncertainty.

Both of these problems are introduced and motivated in the following subsections.

1.5.1 Probabilistic Power Flow in Electrical Distribution Net-

works

In order to properly operate and control distribution grids, probabilistic forecasting
of the network “state” (i.e. complex nodal voltages) is vitally important informa-
tion, both for system operators and for the automated controllers embedded in the
network. Performing such probabilistic forecasting in real-time can be computation-
ally challenging but can also provide numerous operational benefits. The so-called
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probabilistic power flow (PPF) [149] maps uncertainties in the power injection and
parameter space to corresponding performance uncertainties in the operational state.
This tool has become increasingly useful for system operators since its academic in-
ception in 1974 [24, 11]. An excellent review on the topic is provided in [149],
although the state of the art has advanced considerably in recent years, due to the
rapid improvement of advanced Uncertainty Quantification (UQ) techniques.

Most PPF solvers fall into two general categories: analytical methods and simula-
tion methods. The analytical methods typically use mathematical simplifications and
expansions in order to alleviate the computational burden associated with the sim-
ulation methods. For example, [11] uses a convolution of random variables in order
to infer the output probability density function (PDF) of power flow solutions. The
stochastic response surface method (SRSM) was first applied to the PPF in [152],
where polynomial chaos expansion (PCE) is used to construct statistically equivalent
output voltage distributions. Since then, the application of PCE to the PPF problem
has seen a variety of improvements. In [133], optimal truncation and degree selec-
tion of the PC series is considered, and nonlinear correlation of RVs is dealt with;
in [74], so-called Stochastic Testing from [206] is applied to the generalized PCE in
the context of time varying loads. Since PCE can suffer from the curse of dimen-
sionality, [167] proposed the use of the low rank approximation (LRA), where the
polynomial basis coefficient count grows linearly rather than exponentially. The cu-
mulant [203, 59] and point estimate [41, 44] methods are other relatively older, but
still popular, analytical PPF methods. Both, though, must be augmented with series
expansions in order for surrogate output PDFs to be constructed [152].

Direct simulation approaches are typically referred to as Monte Carlo Simulations
(MCS) or, more generally, as sampling-based methods (also sometimes called non-
intrusive). These approaches attempt to directly build either the output distribution
or quantities related to such distribution (i.e. statistical moments) through copious
sampling and simulation of the underlying black box power flow solver. There are two
key aspects that determine the overall speed and efficiency of such sampling-based
methods: the way they choose the samples where the system is to be solved; and the
time it takes to solve each chosen sample.

There are many contributions in the literature on improving the choice of the
samples. For instance, in [90] importance sampling is applied to probabilistic optimal
power flow problem. Latin hypercube and Latin supercube sampling are employed
in [201] and [77], respectively. These advanced sampling approaches attempt to limit
the number of simulations needed to produce output PDFs of sufficiently high-fidelity.
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Figure 1-3: Typical sampling-based methodology for solving PPF: load profile distri-
butions are sampled, the corresponding sample is solved, and the results are passed to
an uncertainty quantification tool. Random variable 𝜉 parameterizes the uncertainty.

While they present some distinct advantages and are typically chosen as the bench-
mark against which alternative techniques are tested [152], MCS-based and in general
sampling-based approaches tend to still be quite computationally heavy.

On the contrary, contributions which seek to speed up the individual “black box”
power flow solutions for a sampling-based PPF solver, especially in the context of
distribution networks, have seldom been published, despite the fact that the power
flow problem itself has been studied for many years. Ostensibly, solving power flow is
not nearly as computationally burdensome as modern neural network training type
problems. In a massive network, though, with three unbalanced phases, the problem
can grow quite large, with tens of thousand of variables, and the numerics can become
poorly conditioned. When it is desirable to solve power flow thousands of times in a
short time period, using only local computational resources, rapid system solves can
be highly attractive.

An essential tool for speeding up numerical solutions of physical systems is Model
Order Reduction (MOR); see [19] for an excellent review of projection-based MOR
techniques. More specifically, [54] proposes a procedure which dynamically constructs
the projection subspace as an external solver runs. This procedure is highly appli-
cable to the PPF problem. Intuitively, PPF subspace construction can be achieved
by exploiting the practical observation that the vast majority of power flow solutions
for the millions of different samples actually live within a small subspace (i.e. 10-
50 dimensions). From an implementation perspective, this subspace is progressively
uncovered from sequentially obtained solutions. In this thesis, the subspace is concur-
rently used in a projection framework to construct and update a ROM which results
in orders of magnitude faster solutions for the majority of the remaining samples.

1.5.2 Probabilistic State Estimation in Electrical Distribution

Networks

Active management of distribution grids and their embedded resources is becom-
ing a critically important task for network operators [21, 101]. In order to prop-
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erly operate and control these distribution grids, knowledge of the network “state”
is vitally important information. In the seminal state estimation works by Fred
Schweppe [165, 164, 163], the state of an electric power system is defined as “the vec-
tor of the voltage magnitudes and angles at all network buses.” Furthermore, state
estimation is defined as “a data processing algorithm for converting redundant meter
readings and other available information into an estimate of the static-state vector.”
Being a well established technology at the transmission level [4], state estimation is
performed every few seconds, and its output allows system operators to make impor-
tant decisions regarding power dispatch, voltage regulation, and stability assessment.
The many potential similar advantages associated with distribution system state es-
timation (DSSE) are discussed in [85]. Despite these advantages, very few utilities
have implemented real time DSSE in their systems [21, 148], suggesting that more
research must be completed before utilities choose to invest in and adopt DSSE as a
tool for system management.

The challenges associated with DSSE are well documented in the literature; they
most saliently include unbalanced operation, highly time varying loads, disparate
measurements (𝜇-PMU, SCADA, other AMI), and a high degree of load uncertainty.
Research survey [148] highlights an overall lack of “data synergy”, due to heteroge-
neous data types, measurement collection protocols, and timing coordinations, as a
primary roadblock for DSSE implementation.

A variety of DSSE solvers have been proposed across the academic literature [169,
139, 112, 147, 159, 47, 124, 130, 187]. Many of these approaches leverage Bayesian
estimation, Kalman filtering, SDP relaxation, or the inclusion of regularizing pseudo-
measurements. A famous solution to the three-phase load flow problem on distribu-
tion circuits, known as forward-backward sweep method, was first proposed in [37],
and a recent review of state-of-the-art DSSE techniques is given in [148]. Authors
in [169] provided side-by-side comparisons of primary DSSE frameworks: weighted
least squares (WLS), weighted least absolute value (WLAV), and the Schweppe Huber
Generalised M (SHGM) estimator.

One of the more famous DSSE methods, formulated with rectangular branch cur-
rent flows in a system with few measurements and many pseudo-measurements, is
given in [113]. The effect of including PMUs is considered in [139]. A similar (but lin-
earized) formulation, developed for “smart distribution systems”, is proposed in [85].
In this paper, measurement variances are carefully constructed using the so-called
delta method. Stochastic optimization methods are leveraged in [112] in order to
minimize meter investment costs while taking DSSE uncertainty into consideration.
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Meter placement is also considered in [166], where the authors seek to minimize the
bus voltage estimation variance at buses without measurement equipment. The ef-
fects of direct smart meter measurement integration are characterized in [147]. A
linear Bayesian state estimator is compared to the typical weighted least squares for-
mulation in [159]. By leveraging load forecasting, [47] also incorporates a Bayesian
state estimator in a linearized network with limited sensing. State estimation via
Kalman filtering, combined with load control, is proposed in [124].

To overcome the inherent uncertainty highlighted in [148], though, advanced un-
certainty quantification (UQ) approaches should be applied to DSSE, just as they
have been successfully applied to the probabilistic power flow (PPF) problem [149].
In PPF, UQ methods, such as Polynomial Chaos Expansion [152], efficiently map
uncertainty in the load forecast space to uncertainty in the voltage profile space.
Analogously, in DSSE, UQ maps uncertainty in the “measurement profile” space to
uncertainty in the voltage profile space, as first proposed in [110]. In massive dis-
tribution networks, with tens of thousands of state variables, sampling-based UQ
approaches can require many minutes to converge if traditional DSSE solvers are
employed. For real-time operation and control, this can be too slow.

1.6 Thesis Contributions and Outline

1.6.1 Contributions of this Thesis

In light of the four problems which were introduced, reviewed and motivated in the
previous subsection, we now state the specific contributions associated with each.

Locating the Source of Forced Oscillations

In this thesis, we develop a systematic procedure to locate the sources of FOs. We
start by deriving a relation between generator terminal voltage and current fluctua-
tions in the presence of persistent oscillation. This relation, which is characterized by
a frequency response function (FRF), can be considered the effective admittance of
the machine, and it will be used to build an equivalent circuit representation of the
grid. Based on this relation, it is possible to effectively distinguish between source
and non-source generators at the forcing frequency. The specific contributions follow:

• A systematic method for calculating a generator’s frequency response function,
with respect to terminal voltage and current perturbations, is given.
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• An equivalent circuit transformation is introduced which treats a generator’s
frequency response function as an effective admittance matrix 𝒴 and any inter-
nal forced oscillations as a current injection ℐ.

• An explicit forced oscillation source location algorithm, which compares pre-
dicted and measured current spectrums while making unique measurement noise
considerations, is presented.

Since model parameters inside of the equivalent circuit model are often uncer-
tain, we then apply a Bayesian optimization framework to the source identification
problem:

• A likelihood function and its physically meaningful covariance matrix are de-
rived with respect to a generator’s terminal perturbations in the frequency do-
main.

• A Bayesian source location algorithm, via two-stage MAP optimization, is for-
mulated to find the most likely set of dynamic model parameters and FO injec-
tion terms.

• A numerical procedure is given which engenders computational tractability in
the context of large scale systems.

Finally, we use the proposed framework to analyze so-called “energy based” source
location methods, such as the DEF method, via dissipativity theory and positive
realness, in the context of a full-scale system. Initially, this framework is used to
analyze a lossy classical power system, but the methods are then generalized to include
arbitrary system models; these generalized methods are thus capable of investigating
all of the problematic effects presented by lines, loads and generator controllers. In
this regard, the primary contributions follow:

• Using the proposed equivalent circuit transformation, we leverage a variety of
tools from AC circuit theory in order to develop a linearized framework for
analyzing oscillation propagation at the system level.

• We subsequently use the proposed framework to theoretically justify the DEF
method and show that there exists no other frequency domain transformation
which will render all components of a classical power system simultaneously
dissipative.
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• A simulation-free algorithm is developed which predicts the performance of the
DEF method in a generalized power system.

• The proposed DQR-transformation is used to analytically investigate the dissi-
pating energy flow properties of three common, yet non-classical, grid compo-
nents.

Decentralized Stability Standard for Microgrids

In this thesis, we develop a certification procedure to allow for plug-and-play oper-
ability of microgrid networks. The specific contributions of this thesis follow:

• In order to parameterize the drives of microgrid stability, we propose a novel
homotopic parameterization of the closed loop controller gains.

• Based on the above parametrization, we develop a fully decentralized stability
criteria, based on rigorous dissipativity concepts applied in the frequency do-
main, which can be applied to DC grids with different components (i.e. sources,
lines, and loads) and can certify stability for an arbitrary network configuration
of these components.

• We prove that any component which satisfies this criteria can be safely added
to a network without a system eigenmode crossing into the unstable right half
plane, thus allowing for “plug-and-play” operability of DC microgrids. A prac-
tical design algorithm is then offered.

• Finally, we extend this methodology to AC microgrid systems, where the ro-
tational energy functions are replaced by nonsingular transformation matrices
and applied to droop-controlled inverter-based AC microgrids.

Real-Time Predictive Modeling of Power System Dynamics

This paper introduces a generalized extension of TDVF, known as Real-Time Vector
Fitting (RTVF), in order to address the limitations associated with TDVF’s canonical
formulation. The corresponding contributions of this thesis follow:

• We develop a first generalization of the basic TDVF scheme by removing the
requirement of pure zero-state conditions, hence allowing for the presence of
non-vanishing initial conditions.
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• We develop a second generalization by allowing all input components to act
concurrently in the time series data sets used to train the RTVF model.

• Finally, in order to account for unobservable stochastic inputs which can cor-
rupt the identification procedure, we formulate a stochastic-RTVF (sRTVF)
scheme, in which filtered data streams are replaced by the output of numerical
correlation (both auto- and cross-) functions.

Probabilistic Power Flow and State Estimation

For any sampling-based method performing PPF, we present a series of methods which
effectively speed up each sample solve. Our work is otherwise completely agnostic
to both the type of UQ methodology used to characterize the output distributions
(i.e. PCE, Stochastic Collocation, etc.), and to the way samples are chosen (i.e.
Monte Carlo, Important Sampling, etc.). We therefore refer to our routine as the
Accelerated -PPF (APPF) routine, since it can be used to speed up any sampling-
based PPF solver. Accordingly, the primary PPF related contributions of this thesis
follow:

• We develop a fast power flow Jacobian solution technique which leverages a
Neumann series approximation.

• We use a dynamically expanding subspace to construct a ROM of the system
which solves rapidly.

• We combine the Jacobian solution and the reduced model solver to construct a
routine which can rapidly solve many sequential power flow problems.

We then apply a similar projection-based model order reduction (MOR) tech-
nique to a standard set of overdetermined state estimation equations. For a given
measurement sample (i.e. input), the resulting ROM is able to solve the underlying
state estimation problem orders of magnitude faster than a full order solver. The
associated algorithm, termed the Accelerated Probabilistic State Estimator (APSE),
can then pass these solutions to any sampling-based UQ technique. The specific
probabilistic state estimation related contributions of this thesis follow:

• We derive exact, second order expansions of the relevant distribution grid state
estimation equations.
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• Leveraging an orthonormalized subspace, we compress the derived expansions
into a low-dimension system of equations (i.e. ROM) which can be solved
rapidly.

• To dynamically construct this subspace and initialize the reduced order model,
we implement an outer-loop QR factorization-based Gauss-Newton solver.

1.6.2 Thesis Outline

The remainder of this thesis document is structured as follows.

∗ In Chapter 2, we attack the problem of locating the sources of FOs. In doing
so, we first introduce our equivalent circuit transformation technique, and then
we use a Bayesian approach to locate the sources of oscillations in this circuit.
Finally, we use the equivalent circuit to provide rigorous analysis of and practical
implementation suggestions for the DEF method.

∗ In Chapter 3, we attack the problem of developing decentralized small-signal
stability certification standards for microgrids. The majority of the chapter will
be devoted to DC microgrids, but we will offer (published) extensions to AC
microgrids as well.

∗ In Chapter 4, we attack the problem of performing real-time predictive modeling
of power system components. We do so by leveraging the canonical TDVF
procedure and adding a series of novel alterations, each rigorously rooted in
system theory. The resulting procedure is thus suitable for real-time use by
power system operators.

∗ In Chapter 5, we attack the problem of solving probabilistic power flow in
electrical distribution networks. We then extend the developed methodology to
the probabilistic state estimation problem.

∗ Finally, in Chapter 6, we offer concluding remarks on the research presented in
this thesis, and we consider a variety of ways in which the work can be extended
in the future.
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Chapter 2

Locating the Sources of Low
Frequency Forced Oscillations

This chapter includes four sections. In the first section, we provide the mathematical
background which will be necessary for solving the problems considered in this chap-
ter. In the second section, we outline a procedure for constructing the effective input
admittance associated with a generator, as seen by the grid, and we explain how this
admittance can be used for performing source location. In the third section, we uti-
lize a Bayesian framework for locating the sources of FOs by incorporating inherent
modeling uncertainties in the construction of these admittance functions. Finally, in
the fourth section, we utilize the equivalent circuit transformation proposed in the
second section to perform a systematic analysis of energy-based FO source location
methods.

2.1 Mathematical Background

2.1.1 Modeling the Forced Periodic Steady-State Response of

LTI Systems

We consider a Hurwitz stable [100] Mingle-Input Multi-Output (MIMO) Linear Time-
Invariant (LTI) system 𝒮𝑙 characterized by the state space formulation [65]

𝑥̇(𝑡) = A𝑥(𝑡) + B𝑢(𝑡)

𝑦(𝑡) = C𝑥(𝑡) + D𝑢(𝑡)

}︃
𝒮𝑙, (2.1)
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which is assumed to be expressed with a minimal realization. We further consider the
limiting situation where there is only one input, and it is a pure sinusoid characterized
by frequency 𝜔0, magnitude 𝑢0, and phase 𝜃0:

𝑢(𝑡) = 𝑢0 cos(𝜔0𝑡 + 𝜃0) (2.2a)

= Re
{︀
𝑢0𝑒

j𝜃0𝑒j𝜔0𝑡
}︀

(2.2b)

= Re
{︀
𝑢̃𝑒j𝜔0𝑡

}︀
. (2.2c)

Signal 𝑢̃ is referred to as a phasor1. If input (2.2a) has been applied to (2.1) and all
transients have died out, then the system is said to be operating in so-called periodic
steady state. In this case, by the properties of linearity, all system states and outputs
will be pure sinusoids which can also be characterized by phasors:

𝑥(𝑡) = Re
{︀
𝑥̃𝑒j𝜔0𝑡

}︀
(2.3)

𝑦(𝑡) = Re
{︀
𝑦𝑒j𝜔0𝑡

}︀
. (2.4)

Plugging (2.2)-(2.4) into (2.1) yields

Re
{︀
j𝜔0𝑥̃𝑒

j𝜔0𝑡
}︀

= ARe
{︀
𝑥̃𝑒j𝜔0𝑡

}︀
+ BRe

{︀
𝑢̃𝑒j𝜔0𝑡

}︀
(2.5)

Re
{︀
𝑦𝑒j𝜔0𝑡

}︀
= CRe

{︀
𝑥̃𝑒j𝜔0𝑡

}︀
+ DRe

{︀
𝑢̃𝑒j𝜔0𝑡

}︀
. (2.6)

Since (2.5)-(2.6) are true ∀𝑡, it is directly implied that the imaginary parts of these
equations also satisfy the equality. Then, multiplying through by 𝑒−j𝜔0𝑡 yields

j𝜔0𝑥̃ = A𝑥̃+ B𝑢̃ (2.7)

𝑦 = C𝑥̃+ D𝑢̃. (2.8)

This is the canonical representation which we will use when analyzing the periodic
steady state response of power systems which are driven by sinusoidal FO inputs. The
frequency response function (FRF) associated with (2.7)-(2.8) can be constructed by
eliminating the state vector 𝑥̃ and solving for the output:

𝑦 = [C (1j𝜔0 −A)B + D⏟  ⏞  
H(𝜔0)

]𝑢̃. (2.9)

1In power system engineering [69], phasor magnitude is typically defined as a sinusoidal peak
amplitude divided by

√
2, yielding a Root Mean Square (RMS) value. This convention is typically

not followed in the dynamical systems literature.
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When evaluated at a singular frequency 𝜔0, which in this thesis will typically represent
the forcing frequency associated with a FO, H(𝜔0) quantifies the degree of magnitude
amplification and phase shift between input and output sinusoids.

2.1.2 Likelihood Function Modeling and Maximum A Poste-

riori (MAP) Estimation

We seek to construct the canonical likelihood function associated with a linear sys-
tem 𝑦 = T(𝑝)𝑢, where 𝑢 is some observable input, 𝑦 is some observable output,
and T(𝑝) is some linear transformation matrix which relates the input and output
observations; the transformation T(𝑝) is assumed to be parameterized by some set of
parameters 𝑝 [99]. We assume both the input and output observations are corrupted
by independent identically distributed (IID) additive white Gaussian noise (AWGN)
vectors 𝜂𝑢 and 𝜂𝑦, with 𝜂 ∼ 𝒩 (0, 𝜎2) in each case. Thus, the observable input/output
relationship is given by

(𝑦 + 𝜂𝑦) = T(𝑝) (𝑢+ 𝜂𝑢) . (2.10)

The likelihood function, which characterizes the likelihood of the observed data given
the model parameters 𝑝, has an associated covariance matrix Σ𝜂. Since the parame-
ters are assumed given (i.e. deterministic), the covariance matrix is given by

Σ𝜂 = E
{︀

(𝑦 −T(𝑝)𝑢)(𝑦 −T(𝑝)𝑢)𝑇
}︀

(2.11a)

= E
{︀

(T(𝑝)𝜂𝑢 − 𝜂𝑦)(T(𝑝)𝜂𝑢 − 𝜂𝑦)𝑇
}︀

(2.11b)

= T(𝑝)E
{︀
𝜂𝑢𝜂

𝑇
𝑢

}︀
T(𝑝)𝑇−E

{︀
𝜂𝑦𝜂

𝑇
𝑢

}︀
T(𝑝)𝑇 +T(𝑝)E

{︀
𝜂𝑢𝜂

𝑇
𝑦

}︀
−E

{︀
𝜂𝑦𝜂

𝑇
𝑦

}︀
. (2.11c)

The covariance matrix is itself, therefore, a function of the parameters. The overall
likelihood function (i.e. multivariate normal distribution) is given by [99]

𝑝likely(𝑑|𝑝) =
𝑒−

1
2
(𝑦−T(𝑝)𝑢)𝑇Σ−1

𝜂 (𝑦−T(𝑝)𝑢)√︀
(2𝜋)𝑛 det {Σ𝜂}

(2.12)

where 𝑑 = [𝑢𝑇 ,𝑦𝑇 ]𝑇 ∈ R2𝑛 is a data vector. This formulation will be utilized when
building the likelihood functions associated with physical generator models.

A typical Bayesian model will utilize the derived likelihood function along with
some statistical model of the parameters, known as a prior. If the prior model is
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Gaussian, with covariance matrix Σ𝑝 and mean 𝜇𝑝, then the prior can be stated as

𝑝prior(𝑝) =
𝑒−

1
2
(𝑝−𝜇𝑝)

𝑇Σ−1
𝑝 (𝑝−𝜇𝑝)√︀

(2𝜋)𝑚 det {Σ𝑝}
. (2.13)

Finally, the posterior distribution, which quantifies and probability of the model, give
the data, is given as the product of the likelihood and the prior, and then divided by
the so-called marginal likelihood function 𝑝marg(𝑝):

𝑝post(𝑝|𝑑) =
𝑝likely(𝑑|𝑝)𝑝prior(𝑝)

𝑝marg(𝑑)
(2.14a)

∝ 𝑝likely(𝑑|𝑝)𝑝prior(𝑝) (2.14b)

The so-called Maximum A Posteriori (MAP) formulation seeks to determine an op-
timal point estimate2 of the posterior distribution [140]. This is accomplished by
maximizing the probability of the model, given the observed data set, i.e.

𝑝MAP = argmax
𝑝∈R𝑚

{𝑝post(𝑝|𝑑))} . (2.15)

Due to the Gaussian nature of the prescribed likelihood function and prior, (2.15) is
typically solved by minimizing the negative log of the posterior [140]:

𝑝MAP = argmin
𝑝∈R𝑚

{−log {𝑝post(𝑝|𝑑))}} (2.16a)

= argmin
𝑝∈R𝑚

{︁
(𝑦 −T(𝑝)𝑢)𝑇 Σ−1

𝜂 (𝑦 −T(𝑝)𝑢)+(𝑝− 𝜇𝑝)
𝑇 Σ−1

𝑝 (𝑝− 𝜇𝑝)
}︁
.

(2.16b)

If the prior term is neglected, the solution to (2.16b) exactly coincides with the
Maximum Likelihood Estimate (MLE). One may also interpret (2.16b) as an MLE
formulation with additional Tikhonov regularization (i.e. 𝑙2-norm regularization).

2.1.3 Dissipative and Positive Real Systems

We define a dynamical system 𝒮 with input 𝑢(𝑡), output 𝑦(𝑡), and supply rate 𝑤(𝑡) =

𝑤(𝑢(𝑡),𝑦(𝑡)). In [192], 𝒮 is defined to be dissipative if there exists a nonnegative and
2Traditionally, the MAP solution is associated with a single point estimate, rather than a full

distribution. This point estimate is referred to as the solution.
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continuously differentiable storage function 𝑆(𝑥) such that

𝑆(𝑥0) +

∫︁ 𝑡1

𝑡0

𝑤(𝑡)d𝑡 ≥ 𝑆(𝑥1), (2.17)

where 𝑥0, 𝑥1 are the system states at times 𝑡0, 𝑡1 respectively. This dissipation
inequality may be alternatively stated as

𝑤(𝑡) ≥ 𝑆̇(𝑥), ∀𝑡 (2.18)

which indicates that the energy supplied to the system must always be at least as
large as the instantaneous change in the system’s energy storage. If 𝑤(𝑡) = 𝑆̇(𝑥), ∀𝑡,
then the system 𝒮 is said to be lossless and no dissipation occurs. Furthermore, 𝒮 is
said to be passive [1, 100] if it is dissipative with respect to the quadratic supply rate

𝑤 (u(𝑡),y(𝑡)) = u𝑇 (𝑡)y(𝑡). (2.19)

Generally, a passive component is one which can only dissipate and store, but not
produce, physical power. Notably though, the term passivity has engendered much
confusion in the academic literature, as rigorously highlighted in [196, 197]. In this
thesis, instead of using the word passivity, we alternatively use a definition offered by
Willems [192, 193], which is often used when defining “passivity”.

Definition 1. A dynamical system 𝒮 is said to be Dissipative with respect to a
Quadratic supply Rate (DQR) if there exists a nonnegative and continuously dif-
ferentiable storage function 𝑆(𝑥) such that

𝑆(𝑥0) +

∫︁ 𝑡1

𝑡0

𝑢(𝑡)𝑇𝑦(𝑡)d𝑡 ≥ 𝑆(𝑥1). (2.20)

For example, if 𝒮 is DQR with 𝑆(x0) = 0 and 𝑆(𝑥) ≥ 0, then from (2.20),∫︁ 𝑡

0

𝑢(𝜏)𝑇𝑦(𝜏)d𝜏 ≥ 0. (2.21)

Most often, in the analysis of “linear” (i.e. linearized) systems, the input and out-
put vectors 𝑢(𝑡),𝑦(𝑡) represent perturbations away from some equilibrium operating
points. When dealing with such perturbations, standard dissipativity is replaced by
so-called incremental dissipativity, which refers to the dissipative nature of a system’s
incremental change from its equilibrium, as defined by [179, eq. (4.159)]. This is
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also known as “shifted dissipativity” in the literature. Unless otherwise noted, in the
remainder of this thesis, the term DQR from Definition 1 will always be meant in an
incremental sense.

Positive Realness

The condition in (2.21) is known as positive realness, and its connections to linear
systems are quite useful. To further specify this property, we consider linear system
𝒮𝑙 from (2.1), which is now assumed to have 𝑃 inputs and 𝑃 outputs. The system’s
𝑃 × 𝑃 transfer function, given by H(𝑠) = 𝐶 (𝑠1−A)−1B + D, can be assessed in
the 𝑠 domain or the j𝜔 domain.

Definition 2 (Willems [193]). Assuming 𝒮𝑙 of (2.1) simultaneously satisfies

1. Re{𝜆(A)} ≤ 0, and

2. the eigenvalues of A on the j𝜔 axis are non-repeated, and the residue matrix at
the simple poles on the j𝜔 axis is Hermitian and non-negative definite,

then the associated transfer function H(𝑠) is positive real if

H(j𝜔) + H(j𝜔)† ≻ 0, ∀𝜔, j𝜔 ̸= 𝜆(A). (2.22)

The well known [193, 171, 100] connection between positive realness and (quadratic)
dissipativity can finally be stated:

𝒮𝑙 is DQR via (2.20) ⇔ H(𝑠) is Positive Real via (2.22). (2.23)

Furthermore, if H(j𝜔) + H(j𝜔)† ≡ 0, j𝜔 ̸= 𝜆(A), then H(𝑠) is said to be lossless.

2.2 Using Effective Generator Impedance for FO Source

Location

2.2.1 Representing Generators as Admittance Functions

This section introduces the concept of a generator’s effective admittance matrix 𝒴 ≡
𝒴(𝑠) which, in the frequency domain, also characterizes its frequency response. If
the generator is an oscillation source, then in addition to matrix 𝒴 , we show that
an effective current source ℐ ≡ ℐ(𝑠) will appear in parallel with admittance 𝒴 . We
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~

Figure 2-1: 2nd order generator tied to a network. Internal generator voltage E′𝑒j𝛿,
terminal voltage V𝑡𝑒

j𝜃𝑡 , and swing bus voltage V𝑠𝑒
j𝜃𝑠 with 𝜃𝑠 = 0 are all shown.

analytically derive these expressions for a classical generator model and then show
how the methods extend to higher order models.

State Space Formulation for a Classical Generator

In this section, the admittance matrix which relates a classical generator’s rectangular
voltage and rectangular current perturbations is derived. Effective current sources
relating to torque and EMF oscillations are also derived. We start by considering a 2nd

order generator with its internal EMF magnitude fixed. This generator is connected
to some terminal bus with positive sequence phasor voltage V𝑡𝑒

j𝜃𝑡 at frequency 𝜔0.
This configuration is shown by Fig. 2-1. The swing equation for the 2nd order
generator [158] is formulated with polar variables using a quasi-stationary power flow
approximation. We neglect armature resistance 𝑅𝑎 since it is typically ∼ 1% of
transient reactance 𝑋 ′

𝑑:

𝛿̇ = ∆𝜔 (2.24)

𝑀∆𝜔̇ = 𝜏m −
V𝑡E

′

𝑋 ′
𝑑

sin(𝛿 − 𝜃𝑡)−𝐷∆𝜔, (2.25)

where 𝑀 = 2𝐻
𝜔0

, 𝜔 = 𝜔0 + ∆𝜔, and we have also assumed 𝑃𝑚 = 𝜔𝜏𝑚 ≈ 𝜏𝑚 since
the speed deviations are small. In order to quantify the admittance matrix (𝒴) and
current injection (ℐ) associated with this generator model, the expression may be
linearized and expressed in state space formulation:

∆𝑥̇ = A∆𝑥+ B∆𝑢 (2.26)

∆𝑦 = C∆𝑥+ D∆𝑢, (2.27)

where the state variable vector 𝑥 contains the torque angle (𝛿) and speed devia-
tion (∆𝜔) of the generator, and the input vector 𝑢 contains the mechanical torque
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variations, two orthogonal terminal bus voltages, and the generator EMF:

𝑥 = [𝛿 ∆𝜔]𝑇 (2.28)

𝑢 =
[︁
𝜏𝑚 Re(𝑉𝑡) Im(𝑉𝑡) E′

]︁𝑇
. (2.29)

In linearizing the swing equation, ∆𝑢𝑉𝑝 is the input vector of polar voltage pertur-
bations, ∆𝑢𝜏 is the input torque perturbation, ∆𝑢E is the input EMF variation, and
power angle is defined as 𝜙 = 𝛿 − 𝜃𝑡:

∆𝑥̇ =A∆𝑥+ B𝑉𝑝∆𝑢𝑉𝑝 + B𝜏∆𝑢𝜏 + BE∆𝑢E (2.30)[︃
∆𝛿̇

∆𝜔̇

]︃
=

[︃
0 1

− V𝑡E′

𝑀𝑋′
𝑑

cos(𝜙) − 𝐷
𝑀

]︃[︃
∆𝛿

∆𝜔

]︃
+ (2.31)[︃

0 0

− E′

𝑀𝑋′
𝑑

sin(𝜙) V𝑡E′

𝑀𝑋′
𝑑

cos(𝜙)

]︃[︃
∆V𝑡

∆𝜃𝑡

]︃
+[︃

0
1
𝑀

]︃ [︁
∆𝜏𝑚

]︁
+

[︃
0

−V𝑡

𝑀𝑋′
𝑑

sin (𝜙)

]︃ [︁
∆E

′
]︁
.

In deriving the admittance, we seek to relate terminal voltage and current pertur-
bations in rectangular coordinates. To do so, small perturbations of the voltage
magnitude ∆V𝑡 and phase ∆𝜃𝑡 on the terminal bus voltage 𝑉𝑡 are considered:

𝑉𝑡 + ∆𝑉𝑡 =(V𝑡 + ∆V𝑡)𝑒
j(𝜃𝑡+Δ𝜃𝑡). (2.32)

After linearizing, the ∆𝑉𝑡 components may be separated into their real and imagi-
nary parts, and the polar rectangular relationships may be expressed by employing
transformation matrix T1. Fig. 2-2 graphically portrays the following relationships:[︃

Re(∆𝑉𝑡)

Im(∆𝑉𝑡)

]︃
⏟  ⏞  

Δ𝑢𝑉r

=

[︃
cos(𝜃𝑡) −V𝑡 sin(𝜃𝑡)

sin(𝜃𝑡) V𝑡 cos(𝜃𝑡)

]︃
⏟  ⏞  

T1

[︃
∆V𝑡

∆𝜃𝑡

]︃
⏟  ⏞  

Δ𝑢𝑉𝑝

(2.33)

Accordingly, the inverse transformation matrix T−1
1 from (2.33) is employed to trans-

form the vector of polar voltage perturbation variables (∆𝑢𝑉𝑝) into the vector of rect-
angular voltage perturbation variables (∆𝑢𝑉𝑟). The corresponding state space matrix
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Figure 2-2: Panel (a) shows the steady state phasor V𝑡𝑒
j𝜃𝑡 and phasor deviation ∆𝑉𝑡.

Panel (b) expands deviation ∆𝑉𝑡 from panel (a) and decomposes the relationship
between the rectangular deviations (Re(∆𝑉𝑡), Im(∆𝑉𝑡)) and the corresponding polar
deviations (∆V𝑡, V𝑡∆𝜃𝑡).

is B𝑉𝑟 , where B𝑉𝑟 = B𝑉𝑝T−1
1 . Reformulating the state space representation yields

∆ẋ =A∆𝑥+ B𝑉r∆𝑢𝑉r + B𝜏∆𝑢𝜏 + BE∆𝑢E, (2.34)

where B𝑉𝑟 has the following analytical structure:

B𝑉r =
E′

𝑀𝑋 ′
𝑑

[︃
0 0

− sin(𝛿) cos (𝛿)

]︃
. (2.35)

The state space model’s output 𝑦 is defined as the orthogonal real and imaginary
current flows into the generator (we call these the negative current injections):

𝐼 =
(Re(𝑉𝑡) + jIm(𝑉𝑡))− E′𝑒j𝛿

j𝑋 ′
𝑑

. (2.36)

Complex current 𝐼 is linearized and split into real and imaginary currents.

∆𝑦 =C∆𝑥+ D𝑉r∆𝑢𝑉r + DE∆𝑢E (2.37)[︃
∆Re(𝐼)

∆Im(𝐼)

]︃
=

[︃
−E′ cos(𝛿0)

𝑋′
𝑑

0

−E′ sin(𝛿0)
𝑋′

𝑑
0

]︃[︃
∆𝛿

∆𝜔

]︃
+ (2.38)

[︃
0 1

𝑋′
𝑑

− 1
𝑋′

𝑑
0

]︃[︃
∆Re(𝑉𝑡)

∆Im(𝑉𝑡)

]︃
+

1

𝑋 ′
𝑑

[︃
− sin(𝛿)

cos(𝛿)

]︃
[∆E′]
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Construction of Transfer Functions

With the state space model formulated, the Laplace transform of the system may be
taken, such that 𝑠x̃(𝑠) = ℒ{𝑥̇}, ỹ(𝑠) = ℒ{𝑦}, etc. Dropping the “of 𝑠” notation,

𝑠x̃ = A𝑥̃+ B𝑉r𝑢̃𝑉r + B𝜏 𝑢̃𝜏 + BE𝑢̃E (2.39)

𝑦 = C𝑥̃+ D𝑉r𝑢̃𝑉r + DE𝑢̃E. (2.40)

The transfer functions, which directly relate inputs and outputs, can be solved for:

𝑥̃ =Θ(𝐵𝑉r𝑢̃𝑉r + 𝐵𝜏 𝑢̃𝜏 + 𝐵E𝑢̃E) (2.41)

𝑦 = [𝐶Θ𝐵𝑉r + 𝐷𝑉r ]⏟  ⏞  
admittance

𝑢̃𝑉r + [𝐶Θ𝐵𝜏 ] 𝑢̃𝜏⏟  ⏞  
current injection

+ [𝐶Θ𝐵E + 𝐷E] 𝑢̃E⏟  ⏞  
current injection

. (2.42)

where Θ = (𝑠1−𝐴)−1. In this formulation, the following observations may be made.
The term which relates terminal bus voltage differentials to the current flows acts as
an admittance matrix. Similarly, the term relating the torque perturbation to the
current flows, in conjunction with the torque perturbation term itself, acts as one
potential current source, and the terms relating the generator EMF perturbation to
the currents flows, in conjunction with the EMF perturbation term itself, acts as a
second potential current source. These are explicitly defined as

𝒴(𝑠) = 𝐶(𝑠1− 𝐴)−1𝐵𝑉𝑟 + 𝐷𝑉𝑟 (2.43)

ℐ𝜏 (𝑠) =
[︀
𝐶(𝑠1− 𝐴)−1𝐵𝜏

]︀
𝜏𝑚 (2.44)

ℐE(𝑠) =
[︀
𝐶(𝑠1− 𝐴)−1𝐵E + 𝐷E

]︀
Ẽ′. (2.45)

With this observation, the following intuitive model formulation emerges:[︃
𝐼𝑅(𝑠)

𝐼𝐼(𝑠)

]︃
⏟  ⏞  

Ĩ(𝑠)

= 𝒴(𝑠)

[︃
𝑉r(𝑠)

𝑉𝐼(𝑠)

]︃
⏟  ⏞  

Ṽ(𝑠)

+ℐ𝜏 (𝑠) + ℐE(𝑠), (2.46)

where 𝒴 is a 2× 2 matrix, and 𝐼r(𝑠) = ℒ{∆Re(𝐼)}, 𝐼𝐼(𝑠) = ℒ{∆Im(𝐼)} etc.

Definition 3. We refer to the framework presented by (2.46) as an equivalent cir-
cuit transformation.

This equivalent circuit transformation will be used in later sections to perform
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quadratic energy function analysis.

From Transfer Function to Frequency Response Function

The primary usefulness of (2.46) comes when evaluating the expression in the fre-
quency domain by setting 𝑠 = jΩ. In this case, 𝒴(𝑠 = jΩ) becomes a Frequency
Response Function (FRF) which relates voltage and current spectrums.

Remark 1. In this thesis, both 𝜔 and Ω represent radial frequency. For the remainder
of this chapter, 𝜔 will represent the frequency associated with a generator’s rotor (i.e.
grid frequency), while Ω will represent the frequency domain variable from 𝑠 = 𝜎+jΩ.

Particularly, we are interested in the frequency Ω = Ω𝑑, where Ω𝑑 is the forcing
frequency associated with an observed FO. The structure of the FRF 𝒴(𝑠 = jΩ)

evaluated at forcing frequency Ω𝑑 may be written explicitly as

𝒴(𝑠 = jΩ𝑑) = 𝛾

[︃
sin 𝛿 cos 𝛿 − cos2 𝛿

sin2 𝛿 − sin 𝛿 cos 𝛿

]︃
+

[︃
0 1

𝑋′
𝑑

−1
𝑋′

𝑑
0

]︃
(2.47)

𝛾 =

E′2

𝑋′2
𝑑(︁

V𝑡E′

𝑋′
𝑑

cos(𝜙)−𝑀Ω2
𝑑

)︁
+ j (Ω𝑑𝐷)

(2.48)

and the voltage and current signals may also be evaluated at the forcing frequency
𝑠 = jΩ𝑑. Of course, this is equivalent to evaluating an associated Fourier transform
at the forcing frequency:

𝑋̃(Ω𝑑) =

∫︁ −∞

∞
𝑋(𝑡)𝑒𝑗Ω𝑑𝑡d𝑡, 𝑋 ∈ {∆Re(𝑉𝑡), ∆Im(𝑉𝑡), ∆Re(𝐼), ∆Im(𝐼)}. (2.49)

Additionally, the negative current injections ℐ𝜏 and ℐE are given as

ℐ𝜏 (𝑠 = jΩ𝑑) = −𝛾𝑋
′
𝑑

E′

[︃
cos(𝛿)

sin(𝛿)

]︃
𝜏𝑚 (2.50)

ℐE(𝑠 = jΩ𝑑) =

(︃
𝛾

V𝑡 sin (𝜙)

E′

[︃
cos(𝛿)

sin(𝛿)

]︃
+

[︃
− sin(𝛿)

𝑋′
𝑑

cos(𝛿)
𝑋′

𝑑

]︃)︃
Ẽ′. (2.51)

In (2.50)-(2.51), we note that 𝜏𝑚 and Ẽ′ represent are the Fourier transforms of torque
and EMF perturbations (i.e. 𝜏𝑚 = ℱ {∆𝜏𝑚} and Ẽ′ = ℱ {∆E′}) evaluated at the
frequency Ω𝑑, as in (2.49). For this reason, we can refer to them as “phasors”, since
they are complex values with an associated magnitude and phase.
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Figure 2-3: A FO in the time domain shows up as a current injection source at the
forcing frequency Ω𝑑 (panel (b)) when the system is transformed into the frequency
domain (ℱ). When Ω ̸= Ω𝑑, this current injection is absent (panel (a)).

Remark 2. To avoid confusion, we note that the frequencies Ω and Ω𝑑 have nothing
to do with the fundamental AC frequency of 50 or 60 Hz; the transformation in (2.49)
is performed on phasors with AC frequencies already excluded.

Most usefully, when a FO does exist at some generator, due to an oscillatory
torque perturbation 𝜏𝑚 or an exciter oscillation Ẽ′, for example, then the associated
current injection will only show up in the equivalent circuit representation at the
forcing frequency Ω𝑑; this is shown in panel (b) of Fig. 2-3. At all other non-forcing
frequencies (i.e. Ω ̸= Ω𝑑), the current injection is absent; this is shown in panel (a)

of Fig. 2-3.

Transformation to a Local 𝑑𝑞 Reference Frame

When considering the structures of (2.47), (2.50), and (2.51), it is clear that signifi-
cant simplification may occur by passing to a 𝑑𝑞 reference frame, i.e. rotating each
expression in the direction of the rotor angle 𝛿. We use the convention of 𝑑𝑞 axes
orientation from [105], so the rotational matrix defined as T2 is

T2 =

[︃
cos(𝛿) sin(𝛿)

− sin(𝛿) cos(𝛿)

]︃
. (2.52)

This transformation is applied to the state space current injection equation Ĩ𝑝 =

𝒴Ṽ𝑝+ℐ𝜏 +ℐE of (2.46). The superscript 𝑑𝑞 denotes variables given in the 𝑑𝑞 reference
frame, while no superscript denotes variables in the real and imaginary reference
frame. For instance, X = [𝑋r𝑋𝑖]

𝑇 is defined in the real and imaginary coordinate

66



Figure 2-4: Orientation of the direct (𝑑) and quadrature (𝑞) axes.

~ ~

Figure 2-5: Circuit diagram interpretation of equation (2.53), where ℐ𝑑𝜏 = −𝛾𝑋′
𝑑

E′ 𝜏𝑚,
ℐ𝑑E = 𝛾V𝑡 sin(𝜙)

E′ Ẽ′, and ℐ𝑞E = 1
𝑋′

𝑑
Ẽ′ as taken from (2.55) and (2.56). At non-source buses,

ℐ𝑑𝜏 = ℐ𝑑E = ℐ𝑞E = 0 and all current flows are caused by terminal voltage deviations.

system while X𝑑𝑞 = [𝑋𝑑 𝑋𝑞]
𝑇 is defined in the 𝑑𝑞 coordinate system. Thus,

Ĩ𝑑𝑞𝑝 = 𝒴𝑑𝑞Ṽ𝑑𝑞
𝑝 + ℐ𝑑𝑞𝜏 + ℐ𝑑𝑞E , (2.53)

where 𝒴𝑑𝑞 = T2𝒴T−1
2 and 𝑥̃𝑑𝑞 = T2𝑥̃ for any vector 𝑥. Fig. 2-4 provides a visual-

ization of these transformations. In the new coordinate system, the direct (𝑑) axis is
in line with 𝛿, and the quadrature (𝑞) axis is perpendicular to the direct axis. Once
transformed, the the admittance matrix and negative current injections are given by

𝒴𝑑𝑞 =

[︃
0 1

𝑋′
𝑑
− 𝛾

− 1
𝑋′

𝑑
0

]︃
(2.54)

ℐ𝑑𝑞𝜏 =

[︃
−𝛾𝑋′

𝑑

E′

0

]︃
𝜏𝑚 (2.55)

ℐ𝑑𝑞E =

[︃
𝛾V𝑡 sin(𝜙)

E′

1
𝑋′

𝑑

]︃
Ẽ′. (2.56)

A conventional orthogonal circuit diagram interpretation of this result is given by
Fig. 2-5. It is important to remember that 𝑉𝑑, 𝑉𝑞, 𝐼𝑑, and 𝐼𝑞 are all complex phasors.
This is a deviation from the standard power systems literature related to generator
analysis (such as [158]) which uses orthogonal 𝑑𝑞 decomposition in order to treat 𝑉𝑞

and 𝑉𝑑 as real valued signals. We note that the purpose of performing this 𝑑𝑞 rotation
is to build the intuition provided by equations (2.54-2.56) and Fig. 2-5. In general,
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transforming voltages and current into a 𝑑𝑞 reference frame is not necessary.

Extension of Methods to an Arbitrary Network Component

Although the proposed methods for quantifying the effective admittance and current
injections of a generator are developed for a low order model, the same techniques
may be employed for an arbitrarily complex model. We consider a power system com-
ponent, shown in Fig. 2-6, whose dynamics are governed according to the Differential
Algebraic Equation (DAE) set

𝑥̇ = f(𝑥,𝑢,𝑢𝑣) (2.57a)

𝑦 = g(𝑥,𝑢,𝑢𝑣), (2.57b)

with state vector 𝑥, terminal voltage input vector 𝑢𝑣 = [V, 𝜃𝑡], and terminal current
output vector 𝑦 = [I, 𝜑]. All other inputs, such as outside control signals, are collected
in 𝑢. During the modeling time period of interest, for a non-FO source generator,
these other extraneous inputs are assumed constant: 𝑢̇ = 0.

Figure 2-6: DAE modeled component tied to a larger power system.

We linearize (2.57) around a steady state operating point to linearly relate the
voltage and current perturbations:

∆𝑥̇ = A∆𝑥+ B∆𝑢𝑣 (2.58a)

∆y = C∆𝑥+ D∆𝑢𝑣, (2.58b)

such that A = f𝑥, B = f𝑢𝑣 , C = g𝑥, D = g𝑢𝑣 . Assuming (2.58) is BIBO sta-
ble [100], its Fourier transform admits the Frequency Response Function (FRF) of
the component:

𝑦(Ω) =
(︀
C(𝑗Ω1−A)−1B + D

)︀⏟  ⏞  
𝒴(Ω)

𝑢̃𝑣(Ω), (2.59)

where Ω is the angular frequency of the input and output signals, and 𝒴 ≡ 𝒴(Ω)∈C2×2

is referred to as the admittance matrix3 relating voltage 𝑢̃𝑣(Ω) ∈ C2×1 and current
3When referring to 𝒴(Ω), we will use the terms FRF and admittance interchangeably, depending
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𝑦(Ω) ∈ C2×1 perturbations. The FRF 𝒴 relates the Fourier transform of the inputs
and the outputs across the full spectrum frequencies, where the Fourier transform of
the time domain signal 𝑥(𝑡), for example, is given by 𝑥̃(Ω) =

∫︀ +∞
−∞ 𝑥(𝑡)𝑒−jΩ𝑡d𝑡. In

polar coordinates, (2.59) can be written more explicitly as[︃
Ĩ(Ω)

𝜑(Ω)

]︃
⏟  ⏞  

Ĩ𝑝(Ω)

=

[︃
𝒴11 𝒴12

𝒴21 𝒴22

]︃
⏟  ⏞  

𝒴(Ω)

[︃
Ṽ(Ω)

𝜃(Ω)

]︃
⏟  ⏞  

Ṽ𝑝(Ω)

, Ω ∈ [0 ∞). (2.60)

We note that the input and output perturbations of (2.59) can be given in polar (Ṽ,
𝜃, Ĩ, 𝜑) or rectangular (𝑉r, 𝑉i, 𝐼r, 𝐼i) coordinates depending on convenience. Of course,
generators are complex machines which may have a variety of controllers (AVR, PSS,
etc.) and a multitude of states, but this process may be generalized for arbitrarily
complex DAE systems f(·) and g(·) so long as terminal current can be written as a
function of terminal voltage.

Example: 6th Order Generator Model with AVR: As a particular example,
we choose to consider a generator model presented in the standardized test cases
of [117]. This generator model may be approximated by the 6th order synchronous
model presented in [129], where the 𝑑 and 𝑞 subscripts denote the Park reference
frames. This model is chosen since it will be used to collect test results in 2.2.4:

𝛿̇ = ∆𝜔 (2.61)

𝑀∆𝜔̇ = 𝑃m − 𝑃e −𝐷∆𝜔 (2.62)

𝑇 ′
d0𝑒̇

′
𝑞 = 𝐸f − (𝑋𝑑 −𝑋 ′

𝑑 − 𝛾𝑑) 𝑖𝑑 − 𝑒′𝑞 (2.63)

𝑇 ′
q0𝑒̇

′
𝑑 =

(︀
𝑋𝑞 −𝑋 ′

𝑞 − 𝛾𝑞
)︀
𝑖𝑞 − 𝑒′𝑑 (2.64)

𝑇 ′′
𝑑0𝑒̇

′′
𝑞 = 𝑒′𝑞 − 𝑒′′𝑞 − (𝑋 ′

𝑑 −𝑋 ′′
𝑑 + 𝛾𝑑) 𝑖𝑑 (2.65)

𝑇 ′′
𝑞0𝑒̇

′′
𝑑 = 𝑒′𝑑 − 𝑒′′𝑑 +

(︀
𝑋 ′

𝑞 −𝑋 ′′
𝑞 + 𝛾𝑞

)︀
𝑖𝑞, (2.66)

where 𝛾𝑥 = 𝑇 ′′
𝑥0𝑋

′′
𝑥 (𝑋𝑥 −𝑋 ′

𝑥) / (𝑇 ′
𝑥0𝑋

′
𝑥), 𝑥 ∈ {𝑑, 𝑞}. With stator resistance neglected,

the electrical power is 𝑃e = 𝑒𝑑𝑖𝑑 + 𝑒𝑞𝑖𝑞, and the terminal currents (𝑖𝑑, 𝑖𝑞) can be
written in terms of the terminal voltages (𝑒𝑑 = V𝑡 sin (𝛿 − 𝜃𝑡), 𝑒𝑞 = V𝑡 cos (𝛿 − 𝜃𝑡))

on the context of usage. In this thesis, though, we will be primarily concerned with the effects of
the FRF matrix at the relevant forcing frequency Ω𝑑 of the FO.
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Figure 2-7: Voltage excitation system associated with source bus #1 in subsection
2.2.4. The forced oscillation source is given by 𝐺 sin(Ω𝑑𝑡).

and the subtransient voltages (𝑒′′𝑑, 𝑒′′𝑞):[︃
𝑖𝑑

𝑖𝑞

]︃
=

[︃
𝑅 −𝑋 ′′

𝑞

𝑋 ′′
𝑑 𝑅

]︃−1 [︃
𝑒′′𝑑 − V𝑡 sin (𝛿 − 𝜃𝑡)

𝑒′′𝑞 − V𝑡 cos (𝛿 − 𝜃𝑡)

]︃
, (2.67)

where 𝑅 = 0 when neglected. The real and imaginary negative current injections
are computed by simply rotating 𝑖𝑑 and 𝑖𝑞 in rectangular space [158] and negating.
Equation (2.68) is a time domain transformation and should not be confused with
the phasor reference frame transformation of (2.52):[︃

𝐼r

𝐼i

]︃
= −

[︃
sin (𝛿) cos (𝛿)

− cos (𝛿) sin (𝛿)

]︃[︃
𝑖𝑑

𝑖𝑞

]︃
. (2.68)

Finally, since PMUs measure the magnitude and phase of voltage and current signals,
it is numerically convenient to have the generator’s FRF relate voltage magnitude and
phase perturbations with current magnitude and phase perturbations. Therefore,
the generator model needs some nonlinear function relating its state and algebraic
variables to the current magnitude (I) and current phase (𝜑):

I =
√︀

𝐼r
2 + 𝐼i

2 (2.69)

𝜑 = tan−1

(︂
𝐼i
𝐼r

)︂
. (2.70)

Controllers may also be included in the generator model. The static voltage excitation
system associated with the source generator of test case “F1” in [117] is approximated
by the block diagram in Fig. 2-7 (limits excluded). The source of the forced oscillation
is given by 𝐺 sin(Ω𝑑𝑡) with gain 𝐺 and forcing frequency Ω𝑑. This forcing function
is not included in the system model; it is only shown for illustration. The exciter’s
associated differential equation follows:

𝑇𝐴𝐸̇𝑓 = 𝐾𝐴(Vref − Vt)− 𝐸𝑓 . (2.71)
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Now that the generator’s full set of nonlinear DAEs (f and g) have been specified,
with input vector 𝑢𝑣 = [V 𝜃]𝑇 and output vector 𝑦 = [I 𝜑]𝑇 , these DAEs can be
linearized and the generator’s FRF 𝒴 can be built via (2.59).

2.2.2 Leveraging 𝒴 For Source Detection

In a deterministic power system where generator model parameters are fully known,
measurement noise is negligible and perturbations are small, the FRF 𝒴 can fully
predict the measured spectrum of the generator output Ĩ𝑝(Ω) for a given measured
spectrum input Ṽ𝑝(Ω) at all non-source generators. In this ideal system, the following
simple test may be naively applied at each generator across the full spectrum of
frequencies.

Ĩ𝑝 = 𝒴Ṽ𝑝 → Non-source generator (2.72)

Ĩ𝑝 ̸= 𝒴Ṽ𝑝 → Source generator (2.73)

In other words, if the measured current spectrum Ĩ𝑝 and the predicted current spec-
trum 𝒴Ṽ𝑝 match, then the generator has no internal oscillation source. If, though,
Ĩ𝑝 ̸= 𝒴Ṽ𝑝 at some particular frequency, then a current source (forced oscillation)
may be present in the generator at said frequency. To implement this test on any
given generator, there must be a PMU present which is capable of measuring the
generator’s terminal voltages and currents so that the respective spectrums may be
computed.

The realities of power system operation can prevent the naive tests of (2.72) and
(2.73) from being directly implemented. There are three primary sources of potential
error in this process. First, nonlinearities may prevent the admittance matrix, which
is built on a linearized system model, from exactly predicting the generator dynamics.
The extent of nonlinear system behavior depends on the size of the oscillation, but the
associated error is typically small enough to be neglected. Secondly, in building the
FRF, generator parameters (damping, time constants, etc.) may have a large degree
of uncertainty. Accordingly, the results presented from tests on the 179-bus system
consider this uncertainty. Additionally, this uncertainty is analyzed much more closely
in the next section. Thirdly, despite the fact that IEEE Standard C37.242 specifics
that PMU magnitude error must be below 0.1%, and timing error must be better than
1 𝜇s (or 0.02∘) [2], additive measurement error from current and voltage transformer
equipment may present additional error. Since measured voltage and current spectral
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comparisons can breakdown severely when this nontrivial PMU measurement noise
is present, the next section introduces a framework for dealing with the problem of
additive measurement noise.

Bounding Error Associated with PMU Measurement Noise

We define V(𝑡), 𝜃(𝑡), I(𝑡) and 𝜑(𝑡) to be the true voltage magnitude, voltage phase,
current magnitude, and current phase time series vectors, respectively, at some gen-
erator bus. We further assume these vectors are perturbations from their respective
steady state operating points. We now define the measured time series vectors to
be 𝑋̂(𝑡), where the true signals are corrupted by Additive White Gaussian Noise
(AWGN) from 𝜖𝑋(𝑡):

𝑋̂(𝑡) = 𝑋(𝑡) + 𝜖𝑋(𝑡), 𝑋 ∈ [V, 𝜃, I, 𝜑]. (2.74)

In measuring the spectrum of 𝑋̂(𝑡), we invoke the linearity property of the Fourier
transform, such that

ℱ{𝑋̂(𝑡)} =
˜̂
𝑋(Ω) = 𝑋̃(Ω) + 𝜖𝑋(Ω). (2.75)

The Fourier transform of AWGN will ideally have a flat magnitude spectrum (equal
to 𝜆𝜖𝑋 ) and a uniformly distributed phase spectrum characterized by 𝒰(0, 2𝜋):

𝜖𝑋(Ω) = 𝜆𝜖𝑋𝑒
j𝒰(0,2𝜋), Ω ∈ [0 ∞). (2.76)

In applying the admittance matrix transformation of (2.60) to calculate the difference
in the measured (̃I𝑝) and the predicted (𝒴Ṽ𝑝) currents at some non-source bus, the
following error may be approximated:

Ĩ− 𝒴Ṽ =

[︃
(̃I + 𝜖I)− 𝒴11(Ṽ + 𝜖V)− 𝒴12(𝜃 + 𝜖𝜃)

(𝜑 + 𝜖𝜑)− 𝒴21(Ṽ + 𝜖V)− 𝒴22(𝜃 + 𝜖𝜃)

]︃
(2.77a)

≈

[︃
𝜖I − 𝒴11𝜖V − 𝒴12𝜖𝜃

𝜖𝜑 − 𝒴21𝜖V − 𝒴22𝜖𝜃

]︃
(2.77b)

=

[︃
𝜖m

𝜖p

]︃
, (2.77c)

where the simplification in (2.77b) is due to the fact that, theoretically, Ĩ − 𝒴11Ṽ −
𝒴12𝜃 = 0 and 𝜑 − 𝒴21Ṽ − 𝒴22𝜃 = 0 for all frequencies. In (2.77c), the variables 𝜖m
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and 𝜖p have been defined which represent the aggregate measurement error spectrums
associated with Ĩ𝑝 − 𝒴Ṽ𝑝. We seek to quantify this error, at each frequency Ω, with
the 𝑙2 norm such that

‖Ĩ𝑝 − 𝒴Ṽ𝑝‖2 =

√︁
|𝜖m|2 + |𝜖p|2. (2.78)

As can been seen from (2.77b), this error norm will be maximized when the com-
plex entries meet the phase conditions ∠𝜖I = −∠(𝒴11𝜖V) = −∠(𝒴12𝜖𝜃) and ∠𝜖𝜑 =

−∠(𝒴21𝜖V) = −∠(𝒴22𝜖𝜃). Since the measurement error spectrums have uniformly
distributed phase angles 𝒰(0, 2𝜋), this is a plausible scenario and it provides us with
a theoretical upper bound on the measurement error for a generator with known
model parameters and no forced oscillation:

Σ2 :=

√︁
max {𝜖m}2 + max {𝜖p}2, (2.79)

where we give the following definitions for max {𝜖m} and max {𝜖p}:

max {𝜖m} = |𝜖I|+ |𝒴11𝜖V|+ |𝒴12𝜖𝜃| (2.80)

max {𝜖p} = |𝜖𝜑|+ |𝒴21𝜖V|+ |𝒴22𝜖𝜃| . (2.81)

In (2.79), Σ2 is the maximum upper bound on the aggregate measurement error, and
it is uniquely defined for all frequencies since both 𝜖m and 𝜖p are direct functions
of frequency. If ‖Ĩ𝑝 − 𝒴Ṽ𝑝‖2 is significantly larger than Σ2 at some frequency, then
PMU measurement error may not be the source of the error, and an internal forced
oscillation may be to blame. In calculating (2.80) and (2.81), the operator must have a
sense of the PMU measurement noise strength. Ideally, this noise strength is constant
in the frequency domain, but realistically, it fluctuates for a time limited signal 𝜖𝑋(𝑡).
Therefore, in estimating the measurement noise strength in any PMU signal, a system
operator should be conservative in choosing values for 𝜆𝜖𝑋 from (2.76). One such
conservative choice, which has been found via experimentation, is to set 𝜆𝜖𝑋 equal
to twice the expected value of the magnitude of the Fast Fourier Transform (FFT)
of its associated time domain signal 𝜖𝑋(𝑡), where 𝜖𝑋(𝑡) is constructed by sampling
length(𝑡) times from 𝒩 (0, 𝜎2

PMU). Therefore,

𝜆𝜖𝑋 ≈ 2 · E [|fft {𝜖𝑋(𝑡)}|] . (2.82)
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Table 2.1: Definition of LSD Terms from (2.83)
Ĩ𝑝 Measured 2× 1 vector of complex valued current magnitude

and phase variables Ĩ(Ω) and 𝜑(Ω)

Ṽ𝑝 Measured 2× 1 vector of complex valued voltage magnitude
and phase variables Ṽ(Ω) and 𝜃(Ω)

𝒴 Modeled 2× 2 frequency dependent complex admittance
matrix, as given by (2.59)

Σ2 Estimated upper bound (frequency dependent) on measurement error
effects, as given by the maximum 𝑙2 norm of the vector in (2.77c)

2.2.3 Defining a Practical Source Location Technique

In computing the error between the measured and predicted currents at a given bus,
(2.79) defines a useful approximate upper bound on the associated measurement er-
ror. As long as the strength of the measurement noise is known (or can be estimated,
such as in [27]), this upper bound can be computed for all frequencies. Assuming an
accurate FRF, significant deviations from this upper bound at any given frequency
may indicate the presence of an internal current source (forced oscillation). To quan-
tify the size of the spectral deviation at each frequency, we introduce a metric termed
the Local Spectral Deviation (LSD). Its form is given as follows:

LSD(Ω) =‖Ĩ𝑝(Ω)− 𝒴Ṽ𝑝(Ω)‖2 − Σ2(Ω). (2.83)

Table 2.1 summarizes the terms in (2.83) which is computed at all generators for which
terminal PMU data data is available. Formally, the LSD calculates the difference in
the prediction error and the maximum bound on the effects of measurement noise
error. To apply the LSD, the operator should first determine the central forcing
frequency Ω𝑑 of the system (there may be multiple forcing frequencies if the system
is experiencing multiple forced oscillations). In Algorithm (1), the steps for using
generator terminal data to determine whether or not a generator is the source of a
forced oscillation are formalized. In this algorithm, the operator specified threshold 𝜄

is used to determine if the LSD is large enough for a generator to be deemed a source.
We note that this algorithm should be applied in situations where an operator has

a high degree of certainty that the detected oscillations are in fact forced oscillations
(references such as [198] and [200] can be useful to this end); the method we have
developed will not locate the source of negative damping in a system, and therefore
it will be unhelpful in locating the source of a natural oscillation.
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Algorithm 1 Generator Source Detection Method
START
1: Use available generator model data to construct DEA sets (2.57a) and (2.57b).
2: Build FRF 𝒴 of (2.59) which relates polar voltage and polar current deviations
3: Acquire PMU time series vectors V(𝑡), 𝜃(𝑡), I(𝑡), 𝜑(𝑡) from generator terminals
4: Subtract estimated steady state operating points from these time series vectors
5: Take the FFT of these perturbation vectors to build Ĩ(Ω) and Ṽ(Ω)
6: Identify forcing frequency (or frequencies) Ω𝑑

7: Compute the LSD of (2.83) at Ω𝑑

8: if LSD < 0 then
9: Prediction error is less than Σ2: Generator is not a source

10: else if 0 < LSD < 𝜄 then
11: Prediction error is larger than Σ2 but less than 𝜄: Generator probably not a source
12: elsePrediction error is larger than threshold
13: Generator is a source

end

2.2.4 Test Results

In this section, we present five sets of test results. First, we consider a 3-bus system
of two 2nd order generators tied to an infinite bus. Second, we test our method on
the modified WECC 179-bus system in the presence of a forced oscillation. Third,
we test our method on the modified WECC 179-bus system in the presence of a
natural oscillation. Fourth, we apply a rectangular forced oscillation in the WECC
179-bus system when a poorly damped mode is present. And fifth, we contrast the
effectiveness of the DEF method and the FRF source location method in the context
of a three-bus system with a constant impedance load.

Radial Generators Tied to Infinite Bus

It is well known in the literature [135, 10] that relying on the location of the largest
detected oscillations is an unreliable way for determining the source of a forced os-
cillation. Because of the excitation of local resonances, large power oscillations can
occur at non-source generators. We demonstrate the effectiveness of our source loca-
tion technique in the presence of resonance amplification occurring on a non-source
generator by simulating the simple 3-bus system of two radial generators tied to an
infinite bus as given by Fig. 2-8. In this system, the lines have 𝑋 = 0.1 and 𝑅 = 0.01,
and other system parameters are summarized in Table 2.2. A forced oscillation is ap-
plied to the mechanical torque of generator 1 via 𝜏𝑚 = 𝜏0 + 𝛼 sin(Ω𝑑𝑡). Additionally,
ambient white noise is applied to the magnitude and the phase of the infinite bus
voltage to mimic system fluctuations.
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Figure 2-8: 3 Bus Diagram with Infinite Bus. Both generators are 2nd order, and a
mechanically forced oscillation 𝜏𝑚 = 𝜏0 + 𝜏 is placed on generator 1. White noise is
applied to the phase and magnitude of the infinite bus voltage.
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Figure 2-9: Active power injection deviations for generators 1 and 2.

The driving frequency of the forced oscillation Ω𝑑 is chosen by considering the
eigenvalues of the system. To find these eigenvalues, the system DAEs of 𝑥̇ = f (𝑥,𝑦)

and 0 = g (𝑥,𝑦) were linearized such that ∆𝑥̇ = f𝑥∆𝑥+f𝑦∆𝑦 and 0 = g𝑥∆𝑥+g𝑦∆𝑦.
The imaginary parts of the complex eigenvalues of the state matrix A𝑠 = f𝑥−f𝑦g−1

𝑦 g𝑥

yield the set of natural frequencies. The natural modes associated with generators
1 and 2 are Ω𝑑1 = 0.708 rad

sec
and Ω𝑑2 = 1.915 rad

sec
, respectively. We therefore choose

to mechanically force the system at 𝑓𝑑 = 2 since this is close to, but not directly on
top of, the natural mode of generator 2. Fig. 2-9 shows a time domain simulation
plot of the power injection deviations at each generator. The standard deviation of
power injections at generator 2 is almost twice as larger as that of generator 1, and
the forcing frequency of 𝑓𝑑 = 2

2𝜋
Hz can be seen underneath the system noise.

After collecting the time domain voltage and current data from the simulation,
the predicted (𝒴Ṽ𝑝) and measured (Ĩ𝑝) current spectrums were compared. For illus-
trative purposes, measurement noise is not applied and generator model parameter
uncertainty is neglected such that 𝒴 is known exactly for both generators. For a small
frequency range, the magnitude spectrum comparisons are given by Fig. 2-10. There
are two important observations concerning these comparisons. First, the spectral
peaks of generator 2 (the non-source generator) at the forcing frequency of 𝑓𝑑 = 0.32
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Figure 2-10: Spectral magnitude of current magnitude (panels (a) & (b)) and current
phase (panels (c) & (𝑑)) perturbations are given for each generator. The forcing
frequency is located at 𝑓𝑑 = 0.32. The ∆ symbol in panels (a) and (c) highlight the
locations of significant deviations between the predicted and expected spectrums.

Table 2.2: Generator Parameters
𝑀 𝐷 𝑋 ′

𝑑 E′ V𝑡 𝜙

Gen 1 4 1 0.25 1.019 1 0.248
Gen 2 1 0.25 0.2 1.031 1 0.117

are much larger than the spectral peaks of generator 1 (the source generator) due to
resonance. Second, the predicted and measured spectrums at the forcing frequency
of the source generator (seen in panels (a) & (c)) misalign significantly. From direct
visual inspection of Fig. 2-10, it is clear that a modest internal oscillation is present
on generator 1 which is causing deviations between the measured and the predicted
spectrums (the LSD is not computed since measurement noise is not applied in this
test).

WECC 179-Bus System (Forced Oscillation)

For further validation, we apply these methods on data collected from the WECC
179-bus system in the presence of multiple forced oscillations. As suggested in [117],
the standardized test case files were downloaded and simulated using Power Systems
Analysis Toolbox (PSAT) [129]. We chose to investigate the performance of our
methods on a modified version of test case “F1”. In “F1”, a scaled 0.86 Hz sinusoid is
added to the reference signal of the AVR attached to the source generator at bus 4
(see [117] for a full system map). In the system, all loads are constant power while all
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non-source generators are modeled as 2nd order classical machines with parameters
𝐷 = 4, 𝑋 ′

𝑑 = 0.25, and various inertias around 𝐻 = 3 (machine base). The source
generator is a sixth order synchronous machine with an Automatic Voltage Regulator
(AVR) modeled by Fig. 2-7. To engender a realistic testing scenario, we modify this
test case in three major ways.

1. Load fluctuations are added to all PQ loads. The dynamics of these fluctuations
are modeled by the Ornstein-Uhlenbeck process [66] of

u̇(𝑡) = −𝐸𝜏𝑢(𝑡) + 1𝜉, (2.84)

𝐸𝜏 is a diagonal matrix of inverse time correlations and 𝜉 is a vector of zero-
mean independent Gaussian random variables (standard deviation 𝜎 = 2.5𝑒−3).
The noise vector 𝑢(𝑡) is added to the PQ loads such that

S(𝑡) = S0 (1 + 𝑢(𝑡)) (2.85)

where S(𝑡) = P(𝑡) + jQ(𝑡).

2. Two additional forced oscillations are added to the system (along with the AVR
oscillation at generator bus 4). Each new oscillation is added to the mechanical
torque of a 2nd order system generator according to

𝜏𝑚 = 𝜏0(1 + 𝛼𝑖 sin(Ω𝑑𝑖𝑡)). (2.86)

These forced oscillations are arbitrarily added to generator buses 13 and 65,
and in each case 𝛼𝑖 = 0.05. One of these oscillations is applied at 𝑓𝑑 = 0.5 Hz
and the second is applied at 𝑓𝑑 = 2.0 Hz.

3. PMU measurement noise is added to the simulation data. AWGN with a stan-
dard deviation of 𝜎 = 0.3 (% pu) is applied to all PMU times series vectors.
This value of 𝜎 was chosen since the associated distribution tails realistically
extend up to ±1% pu. For a visualization of the effect of PMU measurement
noise in the presence of system dynamics, Fig. 2-11 shows the bus voltage mag-
nitude of a generator bus (bus 70). The applied noise greatly corrupts the FFT
calculations.

After simulating the system for 100s, the PMU data from each generator were col-
lected and analyzed according to Algorithm (1). In building the FRF of (2.59) for each
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Figure 2-11: Actual and measured voltage magnitude at bus 70 (generator).

generator, it was assumed generator model parameters were initially known precisely
(the end of this subsection will consider parameter uncertainty). Fig. 2-12 shows a
sample of the simulation results associated with generator bus 9 (a non-source gener-
ator). These results show three spectral lines in each panel: (i) a measured spectrum
magnitude, (ii) a predicted spectrum magnitude, and (iii) a maximum bound on the
associated PMU measurement error Σ2. (2.79) was used to compute Σ2 along with
the approximation given by (2.82). We further assume that 𝜎2

PMU is roughly known
for each PMU. Fig. 2-12 shows that the measured and predicted current (phase and
magnitude) spectrums begin to deviate sharply for frequencies higher than 1 Hz. This
is due to the fact that the admittance matrix amplifies the mid and high frequency
measurement noise, which begins the greatly dominate the voltage signal. Fig. 2-13
shows that the prediction error, though, is always lower than the measurement error
bound. This implies that the generator at bus 9 is not an oscillation source.

The results of Figs. 2-12 and 2-13, which are associated with a non-source bus,
can be contrasted to Figs. 2-14 and 2-15, which are associated with source bus 4.
At this generator, the AVR reference is oscillated at 𝑓𝑑 = 0.86 Hz. This causes large
observable differences in the measured and predicted magnitude spectrums. In Figs.
2-16 and 2-17, the prediction error and measurement noise error bounds are also
contrasted at generators 13 and 65 (both source generators). As can be seen, there
is significant spectral error at the forcing frequencies which the measurement noise
cannot account for. This implies that both of these generators are sources of forced
oscillations.

After analyzing the generator spectrums, the LSD can be quantified at each forc-
ing frequency across all 29 system generators. These results are given in Fig 2-18.
In plotting the LSD indices for each generator at each forcing frequency, the largest
spectral deviations are easily found at the correct source generators. We do not for-
mally define a threshold parameter 𝜄, which is required in the final steps of Algorithm
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Figure 2-12: The spectral magnitude of the measured current magnitude (panel (a))
and the measured current phase (panel (b)) perturbations at generator bus 9 are
given by the blue traces. The associated predicted spectral magnitudes are given
by the black traces. Finally, the orange traces give the estimated maximum PMU
measurement noise errors.
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Figure 2-13: The prediction error ‖Ĩ𝑝−𝒴Ṽ𝑝‖2 and the maximum measurement noise
error Σ2 associated with the non-source generator at bus 9 are plotted. Since there
is no internal forced oscillation, prediction error is mostly caused by measurement
error. Accordingly, the prediction error is bounded by the conservative maximum
measurement noise error estimate Σ2.
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Figure 2-14: The spectral magnitude of the measured current magnitude (panel (a))
and the measured current phase (panel (b)) perturbations at generator bus 4 are
given by the blue traces. T The associated predicted spectral magnitudes are given
by the black traces. Finally, the orange traces give the estimated maximum PMU
measurement noise errors.
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Figure 2-15: The prediction error ‖Ĩ𝑝−𝒴Ṽ𝑝‖2 and the maximum measurement noise
error Σ2 associated with the source generator at bus 4 are plotted. Since there is an
internal forced oscillation at 𝑓𝑑 = 0.86 Hz, the prediction error greatly exceeds the
measurement noise error bound at this frequency.
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Figure 2-16: The prediction error ‖Ĩ𝑝−𝒴Ṽ𝑝‖2 and the maximum measurement noise
error Σ2 associated with the source generator at bus 13 are plotted. Since there is
an internal forced oscillation at 𝑓𝑑 = 0.5 Hz, the prediction error greatly exceeds the
measurement noise error bound at this frequency.
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Figure 2-17: The prediction error ‖Ĩ𝑝−𝒴Ṽ𝑝‖2 and the maximum measurement noise
error Σ2 associated with the source generator at bus 65 are plotted. Since there is
an internal forced oscillation at 𝑓𝑑 = 2.0 Hz, the prediction error greatly exceeds the
measurement noise error bound at this frequency.
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Figure 2-18: The LSD is computed at each generator for 𝑓𝑑 = 0.5 Hz (panel (a)),
𝑓𝑑 = 0.86 Hz (panel (b)), and 𝑓𝑑 = 2.0 Hz (panel (c)). At each frequency, the correct
generator is located, despite strong PMU measurement noise. Generator index 1
corresponds to the generator at bus 4, generator index 5 corresponds to the generator
at bus 13, and generator index 15 corresponds to the generator at bus 65.

(1), since it would have to be found empirically, by a system operator, via PMU data
collected over time. We currently do not have access to such data.

Although the structure of the generator models may be reasonably accurate, the
generator model parameters themselves may be known to a lesser degree of accuracy.
To consider the effects of generator parameter uncertainty, the LSD is re-quantified
for each generator, but in building the FRF of (2.59), generator parameter uncertainty
is introduced over 100 trials. Parameter uncertainty includes all damping, reactance,
time constant, and AVR variables. Inertia uncertainty is not considered since this
is a static and typically very well defined parameter. All parameters are altered by
a percentage chosen from a normal distribution characterized by 𝜇 = 0 and 𝜎 =

10%; this was the largest standard deviation for which parameters uncertainty was
tolerable. The results, given by Fig. 2-19, show that the LSD metric is fairly robust to
model parameter uncertainty for 𝜎 ≤ 10%, although the next section of this chapter
will refine the source location method for enhanced accuracy in the face of uncertainty.
In general, this parameter uncertainty analysis indicates that a reasonably accurate
generator model is necessary to employ these frequency response methods at any
particular generator.
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Figure 2-19: The LSD is computed at each generator for 𝑓𝑑 = 0.5 Hz (panel (a)),
𝑓𝑑 = 0.86 Hz (panel (b)), and 𝑓𝑑 = 2.0 Hz (panel (c)) over 100 trials to consider the
impact of generator parameter uncertainty.

WECC-179 Bus System (Natural Oscillation)

As a third test, the admittance matrix source location technique was applied in the
presence of a natural oscillation (no forced oscillation sources). We used test case
“ND1” from [117], where a natural oscillation is excited in the WECC 179-bus system.
In “ND1”, all generators are modeled as 2nd order, and most are assigned a damping
parameter of 𝐷 = 4. The generators at buses 45 and 159, though, are assigned
𝐷 = −1.5 and 𝐷 = 1, respectively, such that there exists a poorly damped mode
with damping ratio 𝜁 = 0.01. To excite the system’s underdamped mode, a fault
is applied at bus 159 for 0.05s. This system was simulated for 100 seconds with
the same load dynamics and PMU measurement noise assumptions as were used in
simulating test case “F1”. The bus voltage magnitude from generator buses 45 and
159 (oscillations are strongest at these generators) are given before, during, and after
the fault by Fig. 2-20. As can be inferred from this plot, the excited underdamped
natural mode of this system has frequency 𝑓𝑛 = 1.41 Hz.

Since the persisting oscillations are caused by the excitation of a poorly damped
mode, we say the system is experiencing a natural oscillation rather than a forced
oscillation. Therefore, the source location technique should indicate that no generator
contains an internal forcing function. To test this theory, the prediction error aggre-
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Figure 2-20: The voltage magnitude at buses 45 and 159 are plotted before, while,
and briefly after the system experiences a fault. Measurement noise is not shown.
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Figure 2-21: The prediction error ‖Ĩ𝑝−𝒴Ṽ𝑝‖2 and the noise error bound Σ2 associated
with generator 45 are plotted for test case ND1. The prediction error slightly exceeds
the noise error bound at 𝑓 = 1.41 Hz.

gate ‖Ĩ𝑝 − 𝒴Ṽ𝑝‖2 and the noise error bound Σ2 were calculated via Algorithm (1)
and plotted for generator buses 45 and 159 (see Figs. 2-21 and 2-22, respectively). In
each of these cases, the prediction error slightly exceeds the noise error at 𝑓𝑛 = 1.41

Hz. This deviation is very small, though, relative to the strength of the oscillation,
and is likely due to slight nonlinearity of the generator responses (generator current
angular perturbations are very large).

To further analyze the system, the LSDs were calculated at each generator (we
again assumed PMU data were available). Since the LSD is a function of frequency,
and there is no forcing frequency, we computed the LSDs at all generators in the
range of 𝑓 = 1.38 to 𝑓 = 1.42 Hz. We then plot the maximum LSD in this frequency
band for each generator. This result is shown in Fig. 2-23. In this plot, the maximum
LSDs at generators 13 (bus 45) and 28 (bus 159) are seen to cross the zero threshold.
Given the strength of the oscillation, as seen in Fig. 2-20, and the very small deviation
between the prediction and the measurement, none of the sampled generators could
be forced oscillation source candidates. More formally, all calculated LSD values are
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Figure 2-22: The prediction error ‖Ĩ𝑝−𝒴Ṽ𝑝‖2 and the noise error bound Σ2 associated
with generator 159 are plotted for test case ND1. The prediction error slightly exceeds
the noise error bound at 𝑓 = 1.41 Hz.
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Figure 2-23: The maximum LSD, from 𝑓 = 1.38 to 𝑓 = 1.42, is plotted for each
generator. The maximum LSDs at generators 13 (bus 45) and 28 (bus 159) are
slightly positive, but are still sufficiently small.

smaller than any realistically chosen 𝜄 parameter which would represent the threshold
for determining if a generator is the source of a forced oscillation. We may thus
conclude that either the system is being forcibly oscillated by some non-generator
piece of equipment or load, or that a natural oscillation is driving the system’s periodic
dynamics.

WECC-179 Bus System (Forced + Natural Oscillation)

As a fourth test case, we used the natural oscillation test case “ND2” and we added
the forced oscillation described in test case “F63” (both are described in [117]). Specif-
ically, we set the damping parameters of the generators at buses 35 (𝐷35 = 0.5) and
65 (𝐷65 = −1) such that there exists a poorly damped mode (𝜁 = 0.02%) at 0.37 Hz.
Additionally, we forcibly oscillated generator 79’s AVR reference voltage with a addi-
tive square wave of frequency 0.40 Hz. In this particular situation, the presence of a
negative damping at generator 65 can cause the generator to be viewed as a source of
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Figure 2-24: The voltage magnitude at buses 65 and 79 are plotted over 35 seconds.
The natural mode frequency of 0.37 Hz, the forcing frequency of 0.40 Hz, and the
resulting beat frequency can all be seen clearly. Measurement noise is not shown.

the so called “transient energy” in the DEF method. Accordingly, the DEF method
will locate this generator as the source of the negative damping. Our FRF method,
though, may be used in a complimentary fashion to find the forced oscillation source.

The voltage magnitudes at buses 65 and 79 are shown in Fig. 2-24 over 35 sec-
onds. Generator 79’s response to the additive square wave on the AVR reference is
evident. In this test, the forced oscillation frequency is only slightly larger than the
natural frequency of the poorly damped mode. This elicits a strong response from the
generator at bus 65. Accordingly, we compare the prediction error and measurement
noise bound at both generators across the full spectrum of frequencies. In Fig. 2-25,
the the prediction error is seen to be totally contained by the measurement noise error
bound at generator 65. This is true for all other generators (aside from generator 79)
in the system as well. The resulting negative LSDs at all of these generators, across all
frequencies, along with the massively positive LSD at generator 79, indicates there is
only one forced oscillation source. This is shown by Fig. 2-27. Further evidence that
generator 79 is the source of the oscillation can be seen by the Fig. 2-26. There are
a series of prediction error spikes which violate the measurement noise error bound.
The statistical signatures of these spikes further indicate that the forcing function is
a square wave. To understand why, equation (2.87) gives the Fourier series of a pure
square wave 𝑔𝑠(𝑡) with fundamental frequency 𝑓 . This series contains frequencies 𝑓 ,
3𝑓 , 5𝑓 , and so on, just as spectral deviations in Fig. 2-26 occur at 𝑓 = 0.4, 1.2, 2.0

and 2.8 Hz:

𝑔𝑠(𝑡) =
4

𝜋

∞∑︁
𝑛=1,3,5...

sin (2𝜋𝑛𝑓𝑡)

𝑛
. (2.87)
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Figure 2-25: The prediction error ‖Ĩ𝑝−𝒴Ṽ𝑝‖2 and the noise error bound Σ2 associated
with generator 65 are plotted for the test case where an underdamped natural mode
is excited by a forced oscillation. Despite a strong oscillatory response from generator
65 at 0.37 Hz, the prediction error is entirely contained by the measurement noise
error bound for all frequencies.

0  0.4 1.2 2  2.8 3.6 5  
Frequnecy (Hz)

10-3

100

S
q
u
ar

ed
S
p
ec

tr
al

M
ag

n
it
u
d
e ...~I! Y ~V

...
2

'2

Figure 2-26: The prediction error ‖Ĩ𝑝−𝒴Ṽ𝑝‖2 and the noise error bound Σ2 associated
with generator 79, the source bus, are plotted for the test case where an underdamped
natural mode is excited by a forced oscillation. The prediction error violates the
measurement noise error at 𝑓 = 0.4, 1.2, 2.0 and 2.8 Hz.
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Figure 2-27: The LSD is computed at each generator across the full range of measured
frequencies for the natural + forced oscillation test case. Only the largest LSD for
each generator is plotted here, though. Generator index 18, which corresponds to the
generator at bus 79, is correctly identified as the source generator.
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Figure 2-28: 3 bus system with two 2nd order generators and a resistive load. Resistive
Ornstein-Uhlenbeck noise is added to mimic system fluctuations.
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Figure 2-29: The DEF is computed for lines {12}, {13}, and {32}.

3-Bus System with Constant Impedance

As indicated in [36], network resistances embedded in system transfer conductances
(shunt and series) and constant impedance loads may act as the source of transient
energy from the viewpoint of the DEF method. The simplest system known to exhibit
this phenomena [36] can be modeled as a two generator system with some constant
impedance load (or shunt), as given by Fig. 2-28. In this system, we apply light
Ornstein-Uhlenbeck noise of (2.84) to the resistive load in order to mimic system
fluctuations, and we apply a FO of Ω𝑑 = 2 rad

sec
to the torque on generator 1.

After simulating this system and adding white PMU measurement noise with
𝜎 = 0.1 (% pu), the flow of dissipating energy was computed according to [122, eq.
(3)]. The results are given by Fig. 2-29. According to the notation introduced in [122,
eq. (5)], we found that 𝐷𝐸*

12 = 0.61, 𝐷𝐸*
13 = −0.48, and 𝐷𝐸*

32 = 0.94. These results
indicate that energy is flowing from the resistive load at bus 3 to the two generator
buses. Energy is also flowing from the generator 1 (the source bus) to generator 2
(the system sink). These results do not accurately locate the source of the oscillation
due to the resistive load. The reasons why are explained in [36] and shall not be
investigated here. We then applied the FRF method to both generators. In building
the FRF of 𝒴 , reactance and damping parameters were perturbed by a percentage
pulled from a normal distribution with standard deviation 𝜎 = 0.05%. The FO is
clearly located at generator 1 due to the significantly positive LSD at 0.32Hz in panel
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Figure 2-30: The prediction error ‖Ĩ𝑝 − 𝒴Ṽ𝑝‖2 (given as the Squared Spectral Mag-
nitude (SSM)) and the noise error bound Σ2 associated with generator 1 (panel (a))
and generator 2 (panel (b)) are given.

(a) of Fig. 2-30. Conversely, the LSD at 0.32 Hz on generator 2 is effectively 0. Since
the FRF method presented in this section is invariant to network dynamics, it is not
constrained by load modeling assumptions.

2.3 A Bayesian Approach to FO Source Location

Given Uncertain Generator Parameters

In this section, we address the challenges associated with the application of Algorithm
1 when certain modeling parameters of the generators in the system are poorly known.
While many physical parameters, such as as inertia and armature reactance, have a
higher probability of being known by system operators, other necessary parameters,
such as controller gains and time constants, and even the equilibrium point around
which the generator must be linearized, may have a higher degree of uncertainty.
Indeed, the so-called power angle 𝜙 = 𝛿 − 𝜃, which is necessary for linearization, is
only ever known by system operators through the output of a (potentially erroneous)
state estimation routine. For more details, please refer to the literature review in the
introductory chapter.
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2.3.1 Problem Formulation

In this subsection, we leverage a Maximum A Posteriori (MAP) framework for locating
the sources of FOs. Then, we present an explicit procedure for relaxing and solving
the posed MAP problem.

Generator Admittance Prediction Aberrations

As in the previous section, we consider a generator4 connected to a power system
and assume PMU data from the generator’s terminal bus are available. We also
assume the generator is operating with steady state terminal voltage phasor V0𝑒

𝑗𝜃0

and current phasor I0𝑒
j𝜑0 . We respectively define V(𝑡), 𝜃(𝑡), I(𝑡) and 𝜑(𝑡) to be the

measured voltage magnitude, voltage phase, current magnitude and current phase
deviations from steady state. The Fourier transform ℱ of these signals is

𝑋̃(Ω) =

∫︁ −∞

∞
𝑋(𝑡)𝑒jΩ𝑡d𝑡, 𝑋 ∈ {V, 𝜃, I, 𝜑}, (2.88)

where, again, the frequency Ω has nothing to do with the fundamental AC frequency of
50 or 60 Hz; the transformation in (2.88) is performed on phasors with AC frequencies
already excluded. We now consider the FRF 𝒴 ≡𝒴(Ω) from (2.60) which relates a
generator’s terminal voltage (magnitude and phase) perturbations to its terminal
current (magnitude and phase) perturbations in the frequency domain. We note,
however, that the equality in (2.60) changes to an approximation whenever dealing
with measured signals, because measurement noise will always prevent (2.60) from
constituting an exact relationship. From (2.60), we refer to the vector Ĩ𝑝(Ω) as the
current measurement, since it is directly measured by PMUs. Similarly, we refer to
the vector 𝒴(Ω)Ṽ𝑝(Ω) as the current prediction, since the measured voltage vector
Ṽ𝑝(Ω) is multiplied by an admittance matrix model to yield a current estimate. The
error between the measured (Ĩ𝑝(Ω)) and predicted (𝒴(Ω)Ṽ𝑝(Ω)) currents, at each
frequency Ω, may be quantified via the ℓ2 norm:

prediction error(Ω) =
⃦⃦⃦
Ĩ𝑝(Ω)− 𝒴(Ω)Ṽ𝑝(Ω)

⃦⃦⃦
2
. (2.89)

For small perturbations, the primary contributors to the prediction error are PMU
measurement noise, generator model parameter inaccuracies, and unmodeled gener-
ator inputs such as external perturbations. Any FO at a source bus, though, acts as

4While this section exclusively considers generators as the sources of FOs, the given framework
may be extended to any dynamic system component.
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Figure 2-31: The modulus of the measured and predicted current magnitude Ĩ and
current phase 𝜑 spectrums at a source generator are plotted in panels (a) and (b),
respectively. At the forcing frequency of 𝑓𝑑 = 0.5 Hz, the current injection magnitudes
|ℐI| and |ℐ𝜑| can be seen as deviations from the predicted terminal current spectrum.

a current injection represented by ℐ(Ω) ∈ C2×1, where ℐ(Ω) = [ℐI(Ω) ℐ𝜑(Ω)]𝑇 is used
to denote the complex current magnitude (ℐI(Ω)) and complex current phase (ℐ𝜑(Ω))
injections:

Ĩ𝑝(Ω) ≈ 𝒴(Ω)Ṽ𝑝(Ω) + ℐ(Ω). (2.90)

This relation is illustrated at Fig. 2-3. Since FOs are usually dominant at some
forcing frequency Ω𝑑 and nonexistent elsewhere in the frequency spectrum (neglect-
ing nonlinear harmonics), the current injection ℐ will be equal to 0 for all frequencies
Ω ̸= Ω𝑑. At any generator which is not the FO source, the current injection is zero for
all Ω. An example of the measured and predicted current spectrums associated with
a source generator (in the absence of measurement noise and model uncertainty) is
shown by Fig. 2-31. Panels (a) and (b) show the presence of the FO current injection
magnitudes which cause deviation between the measured and predicted current spec-
trums. At non-source generators, these injections do not exist and the measurements
and predictions match.

Constructing the System Likelihood Function

Identifying the source of a FO based on a generator’s FRF relies on the knowledge
of the generator model in order to construct its 𝒴-matrix. If the generator model
parameters are not known with sufficient accuracy, the method cannot be applied
directly. However, since the current injection function ℐ is only non-zero in a nar-
row band around the forcing frequency Ω𝑑, one can use the generator’s measured
response in the remainder of the spectrum in order to identify its parameters. This
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is accomplished by employing the MAP framework.
Since the measurement noise associated with PMU data is approximately white [27],

a likelihood function, which is similar to (2.12) constructed in the background chap-
ter, may be constructed for the system in (2.90), where “system” in this subsection
refers to a single generator. To build this likelihood function, the expanded right
hand side (RHS) of (2.90) is subtracted from the expanded left hand side (LHS).
Assuming an accurate admittance matrix, the system dynamics cancels out and only
measurement noise terms are left over on the RHS of (2.91):[︃

Ĩ

𝜑

]︃
−

(︃[︃
𝒴11 𝒴12

𝒴21 𝒴22

]︃[︃
Ṽ

𝜃

]︃
+

[︃
ℐI
ℐ𝜑

]︃)︃
=

[︃
𝜖I

𝜖𝜑

]︃
−

[︃
𝒴11 𝒴12

𝒴21 𝒴22

]︃[︃
𝜖V

𝜖𝜃

]︃
(2.91)

where 𝜖𝑋 , 𝑋∈{V, 𝜃, I, 𝜑} is a complex random variable associated with the frequency
domain representation of the AWGN distribution 𝜖𝑋 . Accordingly, measured signal
𝑋(𝑡) and its associated true signal 𝑋(𝑡) are related by

𝑋(𝑡) = 𝑋(𝑡) + 𝜖𝑋 , 𝑋∈{V, 𝜃, I, 𝜑}. (2.92)

We now assume 𝜖𝑋 is sampled 2𝐾+1 times with sample rate 𝑓𝑠. The values are placed
into discrete vector 𝜖𝑋 [𝑛], and its Discrete Fourier Transform5 (DFT) is taken. The
resulting single-sided output, 𝜖𝑋 [𝑤], will be a function of the 𝐾+1 frequencies

Ω𝑤 = 2𝜋 ×
[︂
0,

𝑓𝑠
2𝐾+1

,
2 · 𝑓𝑠

2𝐾+1
, . . . ,

𝐾 · 𝑓𝑠
2𝐾+1

]︂
. (2.93)

Since the input distribution to the DFT is a Gaussian, the output will be a frequency
dependent set of complex Gaussians which are IID across frequency. Accordingly,
𝜖𝑋 in fact does not depend on frequency since 𝜖𝑋 [𝑤1] and 𝜖𝑋 [𝑤2] are distributed
identically. Additionally, 𝜖𝑋 can be split into its real and imaginary components
via 𝜖𝑋 = 𝜖𝑋r + j𝜖𝑋i

, where 𝜖𝑋r and 𝜖𝑋i
are both real valued, IID Gaussians with

E[𝜖Xr ] = E[𝜖Xi
] = 0. By the central limit theorem and basic statistics, the variances

of 𝜖𝑋r and 𝜖𝑋i
, which are essential for eventually building the likelihood covariance

matrix, can be computed:

E{𝜖2𝑋r
} = E{𝜖2𝑋i

} =
4 (2𝐾+1)

2
E{𝜖2𝑋}. (2.94)

5We define the 2𝐾 +1 point double sided DFT of 𝑥[𝑛] as 𝑥̃[𝑤] =
∑︀2𝐾

𝑘=0 𝑥[𝑛]𝑒
−j 2𝜋𝑤𝑛

2𝐾+1 where
𝑤 = 0, 1, ..., 2𝐾.
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To continue building the likelihood function, (2.91) must be separated into its real and
imaginary parts in order to preserve the Gaussian nature of the measurement noise.
It is important to note that there are no measurement noise terms associated with the
current injections since vector ℐ is not measured but is instead a mathematical artifact
which represents the current flow attributed to a FO. For notational convenience, the
LHS of (2.91) may be rewritten in terms of the complex variables 𝑀̃ = 𝑀̃r + j𝑀̃i

(magnitude) and 𝑃 = 𝑃r + j𝑃i (phase) while the RHS of (2.91) may be rewritten in
terms of the corresponding complex noise variables 𝑁̃ = 𝑁̃r + j𝑁̃i and 𝑄̃ = 𝑄̃r + j𝑄̃i:[︃

𝑀̃r + j𝑀̃i

𝑃r + j𝑃i

]︃
=

[︃
𝑁̃r + j𝑁̃i

𝑄̃r + j𝑄̃i

]︃
. (2.95)

Equation (2.95) is valid across all frequencies. Explicitly, the residual expressions on
the LHS of (2.95) take on the following forms:

𝑀̃r = Ĩr − 𝒴11rṼr + 𝒴11iṼi − 𝒴12r𝜃r + 𝒴12i𝜃i−ℐIr (2.96)

𝑀̃i = Ĩi − 𝒴11iṼr−𝒴11rṼi − 𝒴12i𝜃r − 𝒴12r𝜃i − ℐIi (2.97)

𝑃r = 𝜑r − 𝒴21rṼr + 𝒴21iṼi − 𝒴22r𝜃r + 𝒴22i𝜃i−ℐ𝜑r (2.98)

𝑃i = 𝜑i − 𝒴21iṼr − 𝒴21rṼi − 𝒴22i𝜃r − 𝒴22r𝜃i−ℐ𝜑i
(2.99)

where the subscripts r and i denote the real and imaginary parts of the admittance
matrix entries, complex frequency domain signals, and current injection terms. The
noise-related expressions, on the RHS of (2.95), take on the following forms:

𝑁̃r = 𝜖Ir − 𝒴11r𝜖Vr + 𝒴11i𝜖Vi
− 𝒴12r𝜖𝜃r + 𝒴12i𝜖𝜃i (2.100)

𝑁̃i = 𝜖Ii − 𝒴11i𝜖Vr − 𝒴11r𝜖Vi
− 𝒴12i𝜖𝜃r − 𝒴12r𝜖𝜃i (2.101)

𝑄̃r = 𝜖𝜑r − 𝒴21r𝜖Vr + 𝒴21i𝜖Vi
− 𝒴22r𝜖𝜃r + 𝒴22i𝜖𝜃i (2.102)

𝑄̃i = 𝜖𝜑i
− 𝒴21i𝜖Vr − 𝒴21r𝜖Vi

− 𝒴22i𝜖𝜃r − 𝒴22r𝜖𝜃i (2.103)

where the real and imaginary components of the measurement noise distributions,
as characterized by (2.94), have been employed explicitly. In equating the real and
imaginary parts of (2.95), four equations are yielded: 𝑀̃r = 𝑁̃r, 𝑀̃i = 𝑁̃i, 𝑃r = 𝑄̃r,
and 𝑃i = 𝑄̃i. Assuming each of these can be written for the 𝐾 + 1 frequencies of
(2.93), then (2.95) may be used to generate a total of 4(𝐾 + 1) equations. It is thus
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useful to define the following R𝐾+1 function vectors:

Zr :=
[︁
𝑍r[0], . . . , 𝑍r[𝐾]

]︁𝑇
Zi :=

[︁
𝑍i[0], . . . , 𝑍i[𝐾]

]︁𝑇
⎫⎬⎭ , 𝑍∈ {𝑀,𝑁,𝑃,𝑄} (2.104)

where each vector entry is a function of one of the 𝐾+1 frequencies from vector (2.93).
The full noise function vector L is now defined which represents the concatenation of
the four individual noise function vectors:

L = [N𝑇
r N𝑇

i Q𝑇
r Q𝑇

i ]𝑇 . (2.105)

The residual function vector R may be defined similarly:

R = [M𝑇
r M𝑇

i P𝑇
r P𝑇

i ]𝑇 . (2.106)

The 4(𝐾+1)×4(𝐾+1) covariance matrix of L is thus

ΣL = E{LL𝑇} (2.107)

=

⎡⎢⎢⎢⎢⎣
ΣNr 0 ΣNrQr ΣNrQi

0 ΣNi
ΣNiQr ΣNiQi

ΣQrNr ΣQrNi
ΣQr 0

ΣQiNr ΣQiNi
0 ΣQi

⎤⎥⎥⎥⎥⎦ (2.108)

where the zero matrices 0 are inserted due to the fact that E{𝑁̃r𝑁̃i} = E{𝑄̃r𝑄̃i} = 0,
by inspection, for all frequencies. By direct extension, ΣNrNi

= ΣQrQi
= 0. Each

of the non-zero sub-covariance matrices in (2.108) will be diagonal due to the fact
that the frequency domain representation of measurement noise at the 𝑘th frequency
is uncorrelated with everything except for itself at the particular 𝑘th frequency.

The multivariate Gaussian likelihood function may now be constructed. In Bayesian
analysis, the likelihood probability density function (PDF) 𝑝likely quantifies the like-
lihood of the observed data in 𝑑 given some set of model parameters in Θ. In this
context, Θ is a vector filled with the generator parameters Θ𝑔 which are necessary
to construct 𝒴 (such as reactances, time constants or AVR gains) and the current
injection terms Θℐ :

Θ =

{︃
Θ𝑔 ⇒ generator parameters
Θℐ ⇒ current injection terms.

(2.109)
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Figure 2-32: The frequencies between Ω𝑝 = Ω𝑑 − Ω𝑟 and Ω𝑞 = Ω𝑑 + Ω𝑟 represent the
frequency range over which the FO has significant effect on the system. Ω𝑟 is half the
range over which the forcing frequency has effect.

Entirely analogous to (2.12), the likelihood function itself is

𝑝likely(𝑑|Θ) =
𝑒−

1
2
R𝑇Σ−1

L R√︁
(2𝜋)4(𝐾+1) det (ΣL)

. (2.110)

Constructing the System Prior Function

Typically, the generator model parameter values in the vector Θ𝑔 ∈ R𝑚 are not
certain, and it is common to quantify this initial certainty with another multivariate
Gaussian PDF [140]:

𝑝prior1(Θ𝑔) =
𝑒−

1
2(Θ𝑔−Θ𝑔)

𝑇
Σ−1

𝑔 (Θ𝑔−Θ𝑔)√︀
(2𝜋)𝑚 det (Σ𝑔)

(2.111)

where Θ𝑔 is the mean vector of prior generator parameter constants and Σ𝑔 is the
corresponding diagonal covariance matrix. High model parameter confidence corre-
sponds to low variance values. Also contained in Θ is the vector Θℐ ∈ R4𝑣:

Θℐ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℐIr(Ω)

ℐIi(Ω)

ℐ𝜑r(Ω)

ℐ𝜑i
(Ω)

, Ω ∈ {Ω𝑝 . . .Ω𝑞} (2.112)

where ℐIr , ℐIi , ℐ𝜑r and ℐ𝜑i
are used in (2.96)-(2.99). By leveraging prior knowledge

about the central FO frequency Ω𝑑, we define these injections to exist only across
the small range of DFT frequencies where the FO energy is dominant: Ω𝑝 through
Ω𝑞 as shown by Fig. 2-32. In defining 𝑣 discrete frequencies is this range, there are
a total of 4𝑣 current injection parameters (per FO) at each generator to include in
(2.112). The prior distribution for these parameters will be taken as an unconditional
IID Laplace distribution [138] (this choice shall be justified at the end of subsection
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2.3.1):

𝑝prior2(Θℐ) =
4𝑣∏︁
𝑗=1

𝜆

2
𝑒−𝜆|Θℐ𝑗 | (2.113)

where Θℐ𝑗 refers to the 𝑗th current injection variable from (2.112). The generator’s
full prior is the product of the generator parameter prior (2.111) and the current
injection prior (2.113).

Applying the MAP Formulation to the Forced Oscillation Source Location
Problem

By leveraging the given likelihood and prior functions, a Bayesian framework, via
MAP optimization, can be used to locate the sources of FOs in the context of a
power system with poorly known generator parameters. The posterior distribution,
which represents the likelihood of the model parameters given the data that have
been observed, is computed through the application of Bayes’ rule at each generator:

𝑝post(Θ|𝑑) ∝ 𝑝likely(𝑑|Θ)𝑝prior1(Θ𝑔)𝑝prior2(Θℐ). (2.114)

We now seek to maximize the posterior since max{𝑝post} corresponds to maximum
confidence in the model parameters for a given set of observed data. Maximizing this
distribution is equivalent to minimizing the negative of its natural log6:

ΘMAP = argmin
Θ∈R𝑧

{− log(𝑝post(Θ|𝑑))} (2.115)

= argmin
Θ∈R𝑧

{︁
Θ𝑔−Θ𝑔

⃦⃦2
Σ−1

𝑔
+R𝑇Σ−1

L R+𝜆 ‖Θℐ‖1
}︁

(2.116)

where ||x||1 =
∑︀

𝑖 |𝑥𝑖| and 𝑧 = 𝑚 + 4𝑣. The unconstrained optimization problem
formulated by (2.115) is similar in structure to the LASSO problem [30] with the
regularization parameter 𝜆 acting as a penalty on non-sparse solutions for the vector
Θℐ , although the admittance matrix 𝒴 contained in R is highly nonlinear. Generally,
optimization problems with objective functions which are formulated as

min
x,y

𝐿(x,y) + 𝜆 ‖y‖1 (2.117)

6To make this statement, we assume the determinant of the covariance matrix in (2.110) is
roughly constant across plausible model parameters.
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are non-differentiable when elements of y are zero. A workaround for solving (2.117)
transforms the unconstrained problem into a constrained problem [160] by introducing
slack variables in the vector u such that (2.117) may be restated as

min
x,y,u

𝐿(x,y) + 𝜆
∑︁
𝑖

𝑢𝑖

s.t. − u ≤ y ≤ u.

(2.118)

The unconstrained FO optimization problem may be restated similarly, where slack
variable vector s has been introduced:

Minimize
⃦⃦

Θ𝑔 −Θ𝑔

⃦⃦2
Σ−1

𝑔
+ R𝑇Σ−1

L R + 𝜆

4𝑣∑︁
𝑖=1

𝑠𝑖

subject to − s ≤ Θℐ ≤ s.

(2.119)

This optimization problem is written for a single generator. We now consider a power
system with 𝑔 generators of which one, or more, may be the source(s) of the FO(s);
PMU data from each generator is assumed to be available. In defining the scalar cost
function 𝑓𝑖 =

⃦⃦
Θ𝑔 −Θ𝑔

⃦⃦2
Σ−1

𝑔
+R𝑇Σ−1

L R+𝜆1𝑇 s associated with the 𝑖th generator, we
may minimize the sum of these cost functions over 𝑔 generators:

Minimize
𝑔∑︁

𝑖=1

𝑓𝑖

subject to − s𝑖 ≤ Θℐ𝑖 ≤ s𝑖, 𝑖 ∈ {1 . . . 𝑔}.
(2.120)

Particularly useful is that (2.120) may be solved as a set of 𝑔 uncoupled optimization
problems: one for each generator. This is made possible due to a relaxation intro-
duced in choosing the current injection prior of (2.113), which is now explained. If a
system operator knows that a FO is occurring in a system, but the source generator is
unknown, then the most appropriate prior distribution for (2.112) would be one which
introduces an ℓ0 norm constraint on current injections among all system generators;
this would constrain the number of non-zero current injections found in the system
to be equal to the number of occurring FOs. Aside from the NP-harness associated
with such a formulation [30], an ℓ0 norm constraint would require that the generator
posterior distributions be optimized simultaneously, thus coupling the optimization
problems of (2.120) and introducing large computational burden. As a relaxed alter-
native, a Laplace prior [138] is chosen to quantify the initial confidence in the current
injection parameters because it ultimately introduces an ℓ1 norm penalty in (2.115).
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This ℓ1 norm penalty naturally encourages sparse regression parameter selection [138]
and introduces the benefit of uncoupled optimization despite inheriting the drawback
of relaxed sparsity. As evidenced by LASSO’s popularity, this is a common relaxation
approach [30] applied to problems which seek sparse parameter recovery.

A Numerical Procedure for MAP Solution

In numerically solving (2.120), the problem becomes computationally burdensome
if the true likelihood covariance matrix of (2.108) is used in the objective function.
Since ΣL depends directly on the model parameters in 𝒴 , obtaining an analytical
solution for Σ−1

L , such that it can be used in computing the necessary gradients and
Hessians, is computationally intensive. In order to minimize (2.119), the following
heuristic steps effectively balance formulation fidelity with tractability:

1. At the 𝑖th iterative optimization step, ΣL is numerically evaluated with the 𝑖th

parameter values of Θ𝑔 such that ΣL𝑖
≡ ΣL|Θ𝑔𝑖

2. Constant matrix ΣL𝑖
replaces analytical matrix ΣL in (2.119)

3. One iterative step is taken in the direction which minimizes this altered cost
function, thus computing Θ𝑔𝑖+1

4. Returning to step 1, these steps are repeated for the (𝑖+1)th iteration, etc.

This process is applied for the covariance matrices of all 𝑔 generators in (2.120).
In treating these matrices as numerically constant at each optimization step, the
objective function for a single 𝑖th generator may now be restated as

𝑓𝑖 =
⃦⃦

Θ𝑔 −Θ𝑔

⃦⃦2
Σ−1

𝑔
+ R𝑇Σ

−1

L R + 𝜆1𝑇 s. (2.121)

Since d
dΘ

(Σ
−1

L ) = 0, Hessian element 𝑖, 𝑗 associated with 𝐶 := R𝑇Σ
−1

L R is therefore
simply

d2𝐶

dΘ𝑗dΘi

= 2

(︂
d2R𝑇

dΘ𝑗dΘi

Σ
−1

L R +
dR𝑇

dΘ𝑗

Σ
−1

L

dR

dΘi

)︂
. (2.122)

An interior point method may be used to solve the optimization problem set up by
(2.120) with objective function (2.121).
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2.3.2 Defining a Forced Oscillation Source Location Algorithm

In this section, the formulations introduced in [39] and Section 2.3.1 are tied together
to explicitly define a FO source location algorithm. For enhanced effectiveness, a
two-stage Bayesian update optimization scheme is introduced. This two-stage scheme
allows the optimizer to primarily focus on generator parameter selection in stage 1
(by excluding data in the bandwidth of the FO) and current injection selection in
stage 2 (by tightening the variances of the generator parameters based on the results
of stage 1).

Stage 1

In stage 1, current injections are not considered. This is made possible if the system
operator has prior knowledge about the location, in the frequency spectrum, of the
current injections (FOs). By instructing the optimizer to ignore current injection
variables Θℐ and all data in the FO range of Fig. 2-32, the optimizer is able to tune
generator parameters without considering current injections. Since this optimization
formulation does not incorporate injection variables, it is thus unconstrained and has
the following form across 𝑔 generators:

Minimize
𝑔∑︁

𝑖=1

𝑓i

𝑓i =
⃦⃦

Θ𝑔 −Θ𝑔

⃦⃦2
Σ−1

𝑔
+ R𝑇Σ

−1

L R.

(2.123)

In populating the residual function vector R with PMU data, an important prac-
tical consideration which should be accounted for is the time window associated with
the data. Since the methods of this chapter are based on linear analysis, the FRF is a
direct function of the equilibrium of the system. If this equilibrium shifts significantly,
parameter estimation and current injection determination will not be possible. To
minimize these nonlinear affects, a short time window (on the order of a few minutes)
should be employed to ensure that the analysis is unaffected by equilibrium swings.

Once the optimizer has converged to some local minimum (termed ΘMAP1) and
stage 1 is complete, the resulting posterior distribution will have mean ΘMAP1 and
covariance matrix ΣΘMAP1

equal to the inverse Hessian H−1 of (2.123) evaluated at
the solution ΘMAP1 [140].

100



Stage 2

Stage 1 is effectively a Bayesian update for the generator parameters. In stage 2, the
prior variances associated with the generator parameters in Σ𝑔 are set equal to the
diagonal values of the inverse Hessian H−1 from stage 1, and the mean values of the
generator parameters in Θ𝑔 are set equal to ΘMAP1. Additionally, the full set of data
in Ṽ𝑝 and Ĩ𝑝 is included in building the likelihood function, and the current injection
variables are introduced into the framework. Again, current injections outside the
range of Ω𝑑±Ω𝑟 may be neglected if it is known a priori that the FO is not occurring
in these frequency bands. Otherwise, the optimization problem and solution in stage
2 are fully characterized by the formulation introduced in subsections 2.3.1 and 2.3.1.
The value of 𝜆 from (2.119) should be set sufficiently high such that the optimizer finds
a sparse set of current injection parameters. Although a cross-validation approach
should typically be employed to choose this regularization parameter, our ultimate
desire is to locate the sources of FOs rather than build the most accurate predictive
model possible, meaning increased regularization may be permissible.

The full set of steps necessary to implement this FO source location procedure
are outlined in Algorithm 2; several of these steps reference equations from [39]. This
algorithm concludes by comparing the size of the current injection solutions in Θℐ to
an operator specified threshold parameter 𝜄.

2.3.3 Test Results

In this section, we test our FO source location method on two test cases. First, we
consider a 4-bus power system (Fig. 2-33), and we apply a sinusoidal oscillation to
the mechanical torque supplied to one of the generators. Second, we apply two FOs
to generators in the WECC 179-bus power system. In each test, white measurement
noise is added to all PMU data (magnitude and phase) to achieve an SNR7 of 45 dB
in accordance with [27]. For model explanation brevity, all simulation code has been
publicly posted online8 for open source access.

7In setting the SNR, the signal power of all angular data is found after angles are sub-
tracted from the angle associated with the system’s so-called center of inertia angle 𝜃coi where
𝜃coi = (

∑︀
𝐻𝑖𝛿𝑖)/(

∑︀
𝐻𝑖) [129].

8https://github.com/SamChevalier/FOs
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Algorithm 2 MAP FO Source Detection Method
START
1: for each of the 𝑔 generators do
2: Analytically construct FRF 𝒴 of (2.59) via DAE sets (2.57a)-(2.57b)
3: Take DFT of generator PMU data V(𝑡), 𝜃(𝑡), I(𝑡), and 𝜑(𝑡) to yield Ĩ𝑝(Ω) and Ṽ𝑝(Ω)
4: Define parameter prior means Θ𝑔 and variances Σ𝑔

5: Use (2.94) and (2.100)-(2.103) to build the likelihood covariance matrix of (2.108)
end

6: MAP Stage 1

7: Identify the range of frequencies Ω𝑑 ± Ω𝑟 where the forced oscillation has significant
effect and remove corresponding data from Ĩ𝑝(Ω) and Ṽ𝑝(Ω)

8: Iterate to local min (ΘMAP1) of (2.123)
∙ Continuously update covariance matrix at each iteration, as described in 2.3.1

9: MAP Stage 2

10: Update generator parameter prior means and variances with ΘMAP1 and H−1 of (2.123)
11: Iterate to local min (ΘMAP2) of (2.120), neglecting injection variables outside Ω𝑑 ± Ω𝑟

12: Via (2.109) and (2.112), parse ΘMAP2 for generator 𝑖 injection vector ℐ 𝑖 = [ℐ𝑇
I𝑖
ℐ𝑇
𝜑𝑖
]𝑇

13: if ‖ℐ 𝑖‖∞ > 𝜄 then
14: Source found at generator 𝑖
15: else
16: No source found at generator 𝑖

end

~~~

Figure 2-33: Three 3rd order generators (with AVRs) are radially tied to an infinite
bus with white noise. An FO is applied to generator 2’s torque.

Three Generators Tied to an Infinite Bus

In this test case, three 3rd order generators, each outfitted with first order automatic
voltage regulators (AVRs), were radially tied to an infinite bus, as given by Fig.
2-33. At the infinite bus, white noise was applied to simulate stochastic system
fluctuations. The mechanical torque applied to generator 2 was forcibly oscillated via
𝜏𝑚(𝑡) = 𝜏0(1 + 0.05 sin(2𝜋0.5𝑡)).

After 120 seconds of simulation, we built the generator admittance matrices using
AVR and generator parameter (𝐷, 𝐻, 𝑋𝑑, 𝑋 ′

𝑑, 𝑋𝑞, 𝑇 ′
𝑑0, 𝐾𝐴, and 𝑇𝐴) values which

were numerically perturbed by a percentage value randomly chosen from 𝒰(−75, 75).
These perturbed parameter values represent the prior means placed into Θ𝑔 for MAP
stage 1. Fig. 2-34 compares the predicted current 𝒴Ṽ𝑝 with the measured current Ĩ𝑝
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Figure 2-34: Shown are the measured (Ĩ𝑝) and predicted (𝒴Ṽ𝑝) current magnitude
(̃I) and current phase (𝜑) power spectral density (PSD) across a range of frequencies
around the forcing frequency (0.5 Hz) before optimization has occurred. Panels (a)
and (b) correspond to generator 1, panels (c) and (d) correspond to generator 2, and
panels (e) and (f) correspond to generator 3.

across a small range of frequencies before MAP is solved. At all generators, there is
significant spectral deviation between the measurements and predictions. From this
data alone, it is not clear which is the source generator of the FO.

Next, stage 1 of the Bayesian update was run, where data in the range of the
FO (the red shaded band in Fig. 2-34) was taken out of the problem altogether and
current injections were not considered. After converging to ΘMAP1, the new set of
generator parameters was used to compute the predicted spectrums in Fig. 2-35.
Strong agreement between the measured and predicted spectrums is evident outside
of the red band of the forcing frequency (which were not included in the stage 1
optimization).

In running stage 2 of the optimization, the current injection variables were reintro-
duced and the full set of frequencies were optimized over. The results are summarized
in Fig. 2-36 which shows the norm of the current injections found at each frequency
at each generator. For clarity, we plot

‖ℐ‖ =
√︁
ℐ2Ir + ℐ2Ii + ℐ2𝜑r

+ ℐ2𝜑i
. (2.124)

In viewing these results, the size of the current injections identified by MAP at gen-

103



0.3 0.4 0.5 0.6 0.7
~ I

P
S
D

Generator 1

(a) Predicted
Measured

0.3 0.4 0.5 0.6 0.7

~ ?
P
S
D

Generator 1

(b) Predicted
Measured

0.3 0.4 0.5 0.6 0.7

~ I
P
S
D

Generator 2

(c) Predicted
Measured

0.3 0.4 0.5 0.6 0.7

~ ?
P
S
D

Generator 2

(d) Predicted
Measured

0.3 0.4 0.5 0.6 0.7
Frequency (Hz)

~ I
P
S
D

Generator 3

(e) Predicted
Measured

0.3 0.4 0.5 0.6 0.7
Frequency (Hz)

~ ?
P
S
D

Generator 3

(f) Predicted
Measured

Figure 2-35: Shown are the measured (Ĩ𝑝) and predicted (𝒴Ṽ𝑝) current magnitude
(̃I) and current phase (𝜑) power spectral density (PSD) around the forcing frequency
(0.5 Hz) after stage 1 of the optimizer has been run.
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Figure 2-36: Shown are the stage 2 current injection results, as quantified by (2.124).

erator 2’s forcing frequency of 0.5 Hz are sufficiently large enough, when compared to
the other generators (which are many orders of magnitude smaller), to clearly indicate
the presence of a forcing function at this generator.

Two Forced Oscillations in the WECC 179-bus System

In conjunction with the IEEE Task Force on FOs, Maslennikov et al. developed a set
of standardized test cases to validate various FO source detection algorithms [117].
For further testing, we applied the methods presented in this section on data collected
from a modified version of test case “F1” in [117], in which the Automatic Voltage
Regulator (AVR) reference signal at a generator (generator 1) in the WECC 179-bus
system was forcibly oscillated at 0.86 Hz. In modifying the system, a second FO
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Figure 2-37: The prediction error, as quantified by the percent difference in the mea-
sured and predicted currents in (2.125), are shown for the system forcing frequencies
of 0.70 Hz in panel (a) and 0.86 Hz in panel (b).

of frequency 0.7 Hz was added to the mechanical torque of the generator (generator
15) at bus 65. Additionally, PMU measurement noise was added as described pre-
viously and Ornstein-Uhlenbeck noise (with parameters taken from [66]) was added
to all constant power loads, as described in [39]. After simulating the system, the
admittance matrices for all system generators were constructed by parameters which
were perturbed as in the previous subsection. For the second order generator model,
parameters 𝐻, 𝐷, 𝑋 ′

𝑑 and E′ were perturbed. For the third order generator model,
the time constant, reactance, inertia, and AVR gain parameters were perturbed.

Next, the measured and predicted spectrums were compared at both of the forcing
frequencies of 𝑓𝑑 = 0.70 Hz and 𝑓𝑑 = 0.86 Hz. To visualize the initial prediction error,
the percent difference between measured and predicted currents are quantified via

Prediction Error % Difference⇒ ‖Ĩ𝑝−𝒴Ṽ𝑝‖
1
2‖Ĩ𝑝‖+ 1

2‖𝒴Ṽ𝑝‖ (2.125)

and plotted in Fig. 2-37. The true source generator is identified in each panel, but
because prediction error is sufficiently large due to parameter inaccuracies, it is not
readily identifiable.

Stage 1 of the algorithm was then run. The results are given for two representative
generators: a non-source generator at bus 9 (Fig. 2-38) and a source generator at bus
65 (Fig. 2-39). Panel (a) in Fig. 2-38 seems to indicate that generator 3 might be the
source of the 0.86 Hz FO due to the large measurement/prediction deviations at this
frequency, but the optimizer is able to reconcile the spectrums in panel (b). Panel (b)
in Fig. 2-39, however, shows a significant gap between the measured and predicted
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Figure 2-38: The predicted current magnitude spectrum is plotted in panel (a) for
generator 3 (located at bus 9) before stage 1 of the optimization procedure. The
predicted current magnitude spectrum is replotted in panel (b) after stage 1 in com-
pleted. Generator 3 is not a FO source.

spectrums at 0.70 Hz caused by the FO. Due to the physically meaningful way in
which the covariance matrix is constructed, the amplification of the measurement
noise at the points of FRF resonance does not prevent the optimizer from converging
to the true set of generator parameters, but the effect can become troublesome if the
SNR of the PMU data drops too low.

Finally, stage 2 of the optimization was run. Fig. 2-40 shows the magnitude of
the current injections, as quantified by (2.124), found by the optimizer. Although no
threshold has been established, it is clear that generator 15 is the source of the 0.70

Hz oscillation and that generator 1 is the source of the 0.86 Hz oscillation. In general,
as the PMU measurement SNR is driven higher, the injections found by the ℓ1 norm
minimization in (2.115) at non-source generators are driven to 0.
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Figure 2-39: The predicted current magnitude spectrum is plotted in panel (a) for
generator 15 (located at bus 65) before stage 1 of the optimization procedure. The
predicted current magnitude spectrum is replotted in panel (b) after stage 1 in com-
pleted. Generator 65 is a FO source at 0.70 Hz.
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Figure 2-40: Current injection magnitudes of (2.124) found by the optimizer in stage
2 at both forcing frequencies.

2.4 A Dissipativity Interpretation of Energy-Based

FO Source Location Methods

In this section, we leverage the equivalent circuit transformation of (2.46), along with
the concept of dissipativity, in order to analyze quadratic energy-based FO source
location methods, such as the popular DEF method [122]. Throughout this section,
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we will make frequent use of Definition 1 and the proposed acronym of DQR. For
convenience, we recall that if a dynamical system is DQR (i.e. Dissipative with
respect to a Quadratic supply Rate), then it will satisfy the time domain integral
(2.20). Furthermore, we note that a linear system is DQR in the time domain if
its FRF is positive real in the frequency domain; refer to subsection 2.1.3 for more
details. Before presenting the analysis, we define a DQR-transformation.

Definition 4. Consider MIMO transfer function H(𝑠) ∈ R2×2 which relates inputs
𝑢̃(𝑠) and output 𝑦(𝑠) via 𝑦(𝑠) = H(𝑠)𝑢̃(𝑠), where H(𝑠) may not be positive real. If
nonsingular matrices M(𝑠) and Γ(𝑠) render matrix M(𝑠)H(𝑠)Γ(𝑠) positive real, then
M(𝑠) and Γ(𝑠) are referred to as DQR-transformation matrices.

The motivation for providing this definition is the link between the positive re-
alness of the resulting transfer function M(𝑠)H(𝑠)Γ(𝑠) and the DQR-ness of the
associated system in the time domain:

M(𝑠)H(𝑠)Γ(𝑠) is Positive Real ⇔ ℒ−1{M(𝑠)H(𝑠)Γ(𝑠)} is DQR. (2.126)

2.4.1 A DQR Interpretation of the DEF Method

In this subsection, we interpret the traditional DEF time domain integral as a test of
dissipativity (i.e. in a DQR sense), and then we offer a frequency domain interpreta-
tion via the LHS of (2.126).

Definition 5. Consider a linear system in the frequency domain characterized by
𝑦 = (C(jΩ𝑑1 − A)−1B + D)𝑢̃, where Ω𝑑 is a forcing frequency. To be consistent
with the DEF literature, we refer to 𝑃 ⋆ = Re

{︀
𝑢̃†𝑦

}︀
as dissipating power, and we

refer to the corresponding time domain integral 𝐸⋆ =
∫︀ 𝑡

0
𝑢𝑇 (𝜏)𝑦(𝜏)d𝜏 as dissipating

energy. By positive realness, 𝐸⋆ > 0⇔ 𝑃 ⋆ > 0.

Common Shunt Components

We first derive or recall the FRFs associated with three of the primary dynamical
elements in classical power systems [13]: constant impedances (𝒴𝑧), constant power
loads (𝒴𝑝), and 2nd order synchronous generators (𝒴𝑔). We first consider a constant
impedance shunt element whose admittance is given by 𝐺𝑧 + j𝐵𝑧 = (𝑅𝑧 + j𝑋𝑧)

−1. If
positive current flows into the element, then Ohm’s law yields

𝐼r(𝑡) + j𝐼i(𝑡) = (𝐺𝑧 + j𝐵𝑧) (𝑉r(𝑡) + j𝑉i(𝑡)) . (2.127)

108



Writing the time domain signals as the sum of a steady state component plus a
perturbation (e.g. 𝐼r(𝑡) = 𝐼r + ∆𝐼r(𝑡)), the linear expression (2.127) can be used to
relate input and output perturbations:[︃

∆𝐼r

∆𝐼i

]︃
=

[︃
𝐺𝑧 −𝐵𝑧

𝐵𝑧 𝐺𝑧

]︃[︃
∆𝑉r

∆𝑉i

]︃
. (2.128)

Constant power loads are quadratic, with real and reactive components given by

𝑃 + j𝑄 = (𝑉r + j𝑉i) (𝐼r + j𝐼i)
* (2.129)

𝑃 = 𝑉r𝐼r + 𝑉i𝐼i (2.130)

𝑄 = 𝑉i𝐼r − 𝑉r𝐼i. (2.131)

By solving this set of equations for 𝐼𝑟 and 𝐼𝑖 and then linearizing around some equi-
librium point, the perturbation relationships are given by[︃

∆𝐼r

∆𝐼i

]︃
=

[︃
−𝐺𝑝 𝐵𝑝

𝐵𝑝 𝐺𝑝

]︃[︃
∆𝑉r

∆𝑉i

]︃
, (2.132)

where 𝐺𝑝 = 𝑉r𝐼r−𝑉i𝐼i
𝑉 2
r +𝑉 2

i
and 𝐵𝑝 = −𝑉i𝐼r−𝐼i𝑉r

𝑉 2
r +𝑉 2

i
are defined for convenience. Since (2.128) and

(2.132) are linear relationships with constant coefficients, taking the Fourier transform
of these perturbation systems yields[︃

𝐼r

𝐼i

]︃
=

[︃
𝐺𝑧 −𝐵𝑧

𝐵𝑧 𝐺𝑧

]︃
⏟  ⏞  

𝒴𝑧

[︃
𝑉r

𝑉i

]︃
(2.133)

[︃
𝐼r

𝐼i

]︃
=

[︃
−𝐺𝑝 𝐵𝑝

𝐵𝑝 𝐺𝑝

]︃
⏟  ⏞  

𝒴𝑝

[︃
𝑉r

𝑉i

]︃
, (2.134)

where 𝐼r ≡ 𝐼r(Ω) = ℱ(∆𝐼𝑟(𝑡)), for example. Finally, the equations relating voltages
and currents in a classical generator are nonlinear and differential, and the associated
FRF is given by (2.47). We denote this FRF as 𝒴𝑔, which we restate here in a slightly
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different, and more useful, form:

𝒴𝑔 =𝛾(Ω)

[︃
sin(𝛿) cos(𝛿) − cos2(𝛿)

sin2(𝛿) − sin(𝛿) cos(𝛿)

]︃
⏟  ⏞  

𝑇𝛿

+

[︃
0 1

𝑋′
𝑑

−1
𝑋′

𝑑
0

]︃
⏟  ⏞  

𝑇𝑋

(2.135)

𝛾(Ω) =
E′2

𝑋 ′2
𝑑

(︁
𝑀 (jΩ)2 + V𝑡E′

𝑋′
𝑑

cos(𝜙)
)︁
− j (Ω𝐷)(︁

V𝑡E′

𝑋′
𝑑

cos(𝜙)−𝑀Ω2
)︁2

+ (Ω𝐷)2
, (2.136)

where 𝛿 is the generator’s absolute rotor angle and 𝛾 ≡ 𝛾(Ω) ∈ C1 is a complex
frequency dependent parameter.

Deriving DQR-Transformation Matrices associated with the DEF method

Originally developed from an energy function perspective [35, 177], the DEF method
has a natural interpretation from the perspective of dissipativity. In this section, this
interpretation is offered explicitly. The DEF is not re-derived here, but is instead
stated in its most basic form and manipulated. The DEF integral is given by

𝑊DE =

∫︁
Im{𝐼*d𝑉 } (2.137)

where 𝐼 is the complex current flowing into an element (negative injection), and d𝑉 is
the corresponding complex voltage differential. This expression may be manipulated:

𝑊DE =

∫︁
Im {(𝐼r − j𝐼𝑖) (d𝑉r + jd𝑉𝑖)} (2.138a)

=

∫︁
(𝐼rd𝑉𝑖 − 𝐼𝑖d𝑉r) (2.138b)

=

∫︁ (︂
𝐼r

d𝑉𝑖

d𝑡
d𝑡− 𝐼𝑖

d𝑉r

d𝑡
d𝑡

)︂
(2.138c)

=

∫︁ (︁
𝐼r𝑉̇i + (−𝑉̇r)𝐼𝑖

)︁
d𝑡. (2.138d)

Assume now that the system underlying (2.138d) is linear with small signal inputs
𝑉̇i, −𝑉̇r and outputs 𝐼r, 𝐼i. In this case, 𝑊DE represents a dissipating energy 𝐸⋆ =∫︀

(𝐼r𝑉̇i + (−𝑉̇r)𝐼i)d𝑡 (by Def. 5), and the corresponding FRF 𝒴𝑑 associated with this
system will satisfy [︃

𝐼r

𝐼i

]︃
= 𝒴𝑑

[︃
˜̇𝑉i

− ˜̇𝑉r

]︃
(2.139)
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in the frequency domain. By the definition of positive realness, the integral (2.138d)
associated with this system will be positive if 𝒴𝑑 is a positive real admittance.

The DEF method is concerned with defining an energy function such that all ele-
ments in the power system “dissipate” energy unless they are the source, and accord-
ingly, the convention used in [123, 118] is for (2.138d) to be negative if a power system
element is not the source of an oscillation. Alternatively stated, positive values of
𝑊DE in [123, 118] indicate the injection of energy from a FO source. To be consistent
with the literature on dissipativity, this chapter assumes the opposite convention: the
dissipating energy integral associated with DQR, non-source power system elements
will be positive. The following theorem provides the DQR-transformation which is
equivalent to the DEF integral of (2.137).

Theorem 1. Consider an element of a power system whose FRF 𝒴 satisfies[︂
𝐼r
𝐼i

]︂
= 𝒴

[︂
𝑉r

𝑉i

]︂
. (2.140)

The DEF integral of (2.137) associated with this element will be nonnegative if

M𝒴Γ + (M𝒴Γ)† ⪰ 0, (2.141)

where DQR-transformation matrices M and Γ are defined as

M =

[︂
1 0
0 1

]︂
(2.142a)

Γ =

[︃
0 − 1

jΩ
1
jΩ

0

]︃
. (2.142b)

Proof. We transform (2.140) via (2.142a) and (2.142b):

M

[︂
𝐼r
𝐼i

]︂
= (M𝒴Γ)Γ−1

[︂
𝑉r

𝑉i

]︂
(2.143a)[︂

𝐼r
𝐼i

]︂
= (𝒴Γ)

[︂
jΩ𝑉i

−jΩ𝑉r

]︂
(2.143b)

In the frequency domain, jΩ𝑉i = ℱ{𝑉̇i} and −jΩ𝑉r = −ℱ{𝑉̇r}, so[︂
𝐼r
𝐼i

]︂
⏟  ⏞  

Ĩ

= (𝒴Γ)

[︃
˜̇𝑉i

− ˜̇𝑉r

]︃
⏟  ⏞  

Ṽ

. (2.144)
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Positive realness of 𝒴Γ ensures that

Re
{︁
Ṽ†Ĩ

}︁
= Re

{︁
Ṽ† (𝒴Γ) Ṽ

}︁
≥ 0, ∀Ṽ ∈ C2×1. (2.145)

In the time domain, this further implies that∫︁ 𝑡

0

V𝑇 (𝜏)I(𝜏)d𝜏 ≥ 0, (2.146)

where ℱ{V} = Ṽ and ℱ{I} = Ĩ. Since the inputs and outputs of (2.144) are identical
to those of (2.139), which come from the manipulated DEF integral of (2.138d), then
positive realness of M𝒴Γ + (M𝒴Γ)† implies a positive DEF integral.

Testing if Classical Network Components are DQR

We apply the results of Theorem 1 to consider whether loads and generators satisfy
the DQR property. For notational simplicity, we define

𝐾𝑥 =
1

2
(M𝒴𝑥Γ + (M𝒴𝑥Γ)†), (2.147)

where the DQR-transformation matrices M, Γ are given by (2.142a), (2.142b).

Lemma 1. The DQR-transformation from Theorem 1 renders linearized constant
power loads lossless.

Proof. The eigenvalues of (2.147) for 𝒴 = 𝒴𝑝, from (2.134), are

𝜆 {𝐾𝑝} = 𝜆

{︂
1

2

(︀
𝒴𝑝Γ + Γ†𝒴†

𝑝

)︀}︂
(2.148a)

= 𝜆

{︂
1

2
(𝒴𝑝Γ− 𝒴𝑝Γ)

}︂
(2.148b)

= {0, 0} (2.148c)

Since the eigenvalues are both 0, then Re{Ṽ†Ĩ} = 0 and the constant power loads are
rendered lossless.

Lemma 2. The DQR-transformation from Theorem 1 renders linearized classical
generator models DQR, but not strictly DQR.
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Proof. The eigenvalues of (2.147) for 𝒴 = 𝒴𝑔, from (2.135), are:

𝜆 {𝐾𝑔} = 𝜆

{︂
1

2

(︀
𝒴𝑔Γ + Γ†𝒴†

𝑔

)︀}︂
(2.149)

=

{︂
−Im {𝛾}

Ω
, 0

}︂
(2.150)

=

⎧⎪⎨⎪⎩
𝐷 E′2

𝑋′2
𝑑(︁

V𝑡E′

𝑋′
𝑑

cos(𝜙)−𝑀Ω2
)︁2

+ (Ω𝐷)2
, 0

⎫⎪⎬⎪⎭ . (2.151)

Since one eigenvalue is strictly positive (assuming positive damping) and one eigen-
value is 0, then Re{Ṽ†Ĩ} ≥ 0 and the generator is rendered DQR.

Lemma 3. The DQR-transformation from Theorem 1 renders constant impedance
loads indefinite non-DQR in terms of dissipating energy injection.

Proof. The eigenvalues of (2.147) for 𝒴 = 𝒴𝑧, from (2.133), are:

𝜆 {𝐾𝑧} = 𝜆

{︂
1

2

(︀
𝒴𝑧Γ + Γ†𝒴†

𝑧

)︀}︂
(2.152)

=

{︂
−𝐺𝑧

Ω
, +

𝐺𝑧

Ω

}︂
. (2.153)

Since the eigenvalues are equal in magnitude but opposite in sign, 𝐾𝑧 is an indefinite
Hermitian matrix, and 𝑃 ⋆ = Re{Ṽ†Ĩ} can be positive or negative. Accordingly,
conductive elements render an indefinite dissipating energy injection.

The results of Lemma 3 may be used to compute the conditions under which a
conductance (shunt or series) will inject positive or negative dissipating energy. To
do so, we manipulate the dissipating power Re{Ṽ†Ĩ}:

𝑃 ⋆ = Re

{︃
Ṽ†

[︃
0 −j𝐺𝑧

Ω
j𝐺𝑧

Ω
0

]︃
Ṽ

}︃
(2.154)

= −𝐺𝑧

Ω
Im
{︁

˜̇𝑉 †
i

˜̇𝑉r − ˜̇𝑉 †
r

˜̇𝑉i

}︁
. (2.155)

We switch to a polar representation of the voltage perturbation phasors so that ˜̇𝑉r =

jΩ|𝑉r|𝑒j𝜃r and ˜̇𝑉i = jΩ|𝑉i|𝑒j𝜃𝑖 (see [123, Fig. 2] for an interpretation):

𝑃 ⋆ = 𝐺𝑧Ω
⃒⃒⃒
𝑉i

⃒⃒⃒ ⃒⃒⃒
𝑉r

⃒⃒⃒
Im
{︀
𝑒j(𝜃r−𝜃i) − 𝑒−j(𝜃r−𝜃i)

}︀
(2.156)

= 2𝐺𝑧Ω
⃒⃒⃒
𝑉i

⃒⃒⃒ ⃒⃒⃒
𝑉r

⃒⃒⃒
sin(𝜃r − 𝜃i) (2.157)
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~

Figure 2-41: A generator (element 1), a constant impedance load (element 2), and a
constant power load (element 3) are tied to an oscillating infinite bus.
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Figure 2-42: Simulated DEFs associated with the generator, impedance, and constant
power load from Fig. 2-41. Real voltage perturbations lead the phase of imaginary
voltage perturbations at the infinite bus, and generator damping is positive.

Therefore, the sign of the dissipating energy injection depends on sin(𝜃r− 𝜃𝑖), i.e. sin

of the phase shift between the input voltage perturbations. This can be shown to be
consistent with the conditions given in [36] for energy injection.

Simulation Results

To test the results presented in Theorems 1-3, we consider a situation in which a
forced oscillation is applied by an infinite bus to the three power system elements in
consideration, as depicted by Fig. 2-41. For the sake of model explanation brevity,
all simulation code has been publicly posted online9. Two tests were run: in the first
test, the phase of 𝑉r at the infinite bus led the phase of 𝑉i by 𝜋

5
, and the damping of

the generator was assigned positive and large. The dissipating energy integrals were
computed according to (2.138d). Additionally, the dissipating energy injected by the
constant impedance load was predicted by integrating the analytical expression given
in (2.157). These results are shown in Fig. 2-42, where the energy dissipation is
positive for the impedance load and the generator. The dissipating energy of the
constant power load is lossless.

In the second test, the phase of 𝑉r at the infinite bus lagged the phase of 𝑉i by
𝜋
5
, and the damping of the generator was assigned a slightly negative value. These

9https://github.com/SamChevalier/PassiveFOs
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Figure 2-43: Simulated DEFs associated with the generator, impedance, and constant
power load from Fig. 2-41. Real voltage perturbations lag the phase of imaginary
voltage perturbations at the infinite bus, and generator damping is slightly negative.

results are shown in Fig. 2-43, where the energy dissipation of the impedance load
has switched signs and is now negative. The constant power load is still lossless, and
the generator, when stable, has a slight negative trend and therefore injects negative
dissipating energy. This is predicted by the non-zero eigenvalue in (2.151).

2.4.2 Deriving a “Perturbative” Network Model

In this subsection, we introduce a linearized network model which is particularly useful
for analyzing FO propagation in power systems. We refer to it as a “perturbative”
model since it captures the network’s response to small10 perturbations.

Network Modeling

Consider a power system network whose graph 𝒢(𝒱 , ℰ) has edge set ℰ , |ℰ| = 𝑚,
vertex set 𝒱 , |𝒱| = 𝑛, and directed nodal incidence matrix 𝐸 ∈ R𝑚×𝑛 [12]. In power
system modeling, it is standard practice to use the incidence matrix to build the nodal
admittance matrix 𝑌𝑏 from the primitive admittance matrix 𝑌𝑝 via 𝑌𝑏 = 𝐸†𝑌𝑝𝐸 [131].
This procedure is possible because the admittances in 𝑌𝑝 are complex values ∈ C1.
In the following analysis, all admittances in the form of (2.59) must be expressed in
2 × 2 matrix form (i.e. 𝒴 ∈ C2×2). Accordingly, we need an incidence matrix which
can relate 2 × 2, rather than 1 × 1, admittance values. We thus build a so-called
“augmented” incidence matrix 𝐸𝑎 ∈ R2𝑚×2𝑛. This matrix is constructed by taking 𝐸

and replacing all values of 1 with the 2× 2 identity matrix 12 and all values of 0 with
10Similar to the other tools in this chapter, the following framework is valid when FOs are suffi-

ciently “small”, such that quadratic nonlinearities may be neglected.
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a 2× 2 zero matrix 0:

𝐸 =

⎡⎢⎣ 1 −1 · · ·
0 1
... . . .

⎤⎥⎦ ⇔ 𝐸𝑎 =

⎡⎢⎣ 12 −12 · · ·
0 12... . . .

⎤⎥⎦ . (2.158)

Considering voltage and current perturbation phasors such as ũ𝑣 and ỹ from (2.59),
we define the vector V𝑏 ∈ C2𝑛×1 as the vector of rectangular bus voltage perturbation
phasors, and we define the vector I𝑙 ∈ C2𝑚×1 as the vector of rectangular line current
perturbation phasors, where the convention of the positive line current flows agrees
with the direction of the augmented incidence matrix:

V𝑏 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑉r,1

𝑉i,1

...
𝑉r,𝑛

𝑉i,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, I𝑙 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐼r,1

𝐼i,1
...

𝐼r,𝑚

𝐼i,𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.159)

Admittance matrices 𝒴𝑙,1, ...,𝒴𝑙,𝑚, 𝒴𝑙,𝑖 ∈ R2×2, associated with the 𝑚 transmission
lines, are placed diagonally in the matrix 𝒴𝐿 ∈ R2𝑚×2𝑚 such that

𝒴𝐿 =

⎡⎢⎣ 𝒴𝑙,1 0
. . .

0 𝒴𝑙,𝑚

⎤⎥⎦ . (2.160)

Transformers with off-nominal tap ratios, such as tap changers, are discussed in Ap-
pendix A.1. Line current and bus voltage perturbations obey Ohm’s law:

𝒴𝐿𝐸𝑎V𝑏 = I𝑙. (2.161)

Admittance matrices 𝒴𝑠,1, ...,𝒴𝑠,𝑛, 𝒴𝑠,𝑖 ∈ C2×2, associated with shunt elements at each
of the 𝑛 buses, are placed diagonally in the matrix 𝒴𝑆 ∈ C2𝑛×2𝑛, such that

𝒴𝑆 =

⎡⎢⎣ 𝒴𝑠,1 0
. . .

0 𝒴𝑠,𝑛

⎤⎥⎦ . (2.162)

These shunt admittances are not simply capacitors or inductors; they can represent
generators, loads, or any other terminal element in the system and can be constructed
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via (2.59). If multiple elements are connected in parallel, such as a generator and
its station load, their admittances can be modeled independently and summed to
compute the aggregate shunt admittance. The shunt matrix 𝒴𝑆 may be used to
compute the shunt current injections11 I𝑠∈C2𝑛×1 via

I𝑠 = 𝒴𝑆V𝑏. (2.163)

When analyzing a network with this representation, FOs show up like current sources
at their respective source buses. For a system experiencing a single FO, there will be
a single current source ℐ ∈ C2×1 driving the entire network. We define a sparse FO
vector of current injections J ∈ C2𝑛×1 whose structure will take the form

J = [0, . . .0, ℐ𝑇 , 0, . . .0]𝑇 . (2.164)

If bus 𝑘 is the source of the FO, then ℐ will be located in elements J2𝑘−1 and J2𝑘.
Source injections in J obey the same current convention as I𝑠. The network obeys
KCL, i.e., all nodal currents sum to 0:

J + I𝑠 + 𝐸†
𝑎I𝑙 = 0. (2.165)

We define I𝐼 ≡ 𝐸†
𝑎I𝑙 to be the aggregate current injection at each node: it represents

the sum of the source current injection at each bus plus the shunt current flowing to
ground. Via conservation of current at each bus, we have

−J = I𝐼 + I𝑠 (2.166a)

= 𝐸†
𝑎I𝑙 + 𝒴𝑆V𝑏 (2.166b)

=
(︀
𝐸†

𝑎𝒴𝐿𝐸𝑎 + 𝒴𝑆

)︀
V𝑏. (2.166c)

The block-Hermitian dynamic nodal admittance (or augmented dynamic Y-bus) ma-
trix 𝒴𝐵 ∈ C2𝑛×2𝑛 is this defined to be

𝒴𝐵 = 𝐸†
𝑎𝒴𝐿𝐸𝑎 + 𝒴𝑆. (2.167)

Assuming there is a single FO in the system, it is instructive to rewrite (2.166c) with
partitioned matrices and vectors, where the system has been renumbered such that

11Shunt currents flowing out of the circuit to ground are defined as positive.
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the source bus is bus 1, and the current injection has a value of ℐ ∈ C2×1:

−J = 𝒴𝐵V𝑏 (2.168a)[︃
−ℐ
0

]︃
=

[︃
𝒴𝐵1 𝒴𝐵2

𝒴𝐵3 𝒴𝐵4

]︃[︃
V𝑠

V𝑛𝑠

]︃
, (2.168b)

where V𝑠 ∈C2×1 represents voltage perturbations at the source bus, V𝑛𝑠 ∈C(2𝑛−2)×1

represents voltage perturbations at all other buses, and V𝑏 = V⌢
𝑠 V𝑛𝑠. While ℐ

represents the true source current injection, we may also define ℐ ′ as the sum of the
source current at the source bus plus its shunt injection:

ℐ ′ = ℐ + 𝒴𝑠,1V𝑠. (2.169)

Correspondingly, we say that 𝒴 ′
𝐵1 contains no shunt element, and ℐ ′ is the current

directly measured at the source bus flowing into the network ; we note that it is equal
to the first two elements of I𝐼 . We now restate (2.168a)-(2.168b) with this update:

−J′ = 𝒴 ′
𝐵V𝑏 (2.170a)[︃

−ℐ ′

0

]︃
=

[︃
𝒴 ′

𝐵1 𝒴𝐵2

𝒴𝐵3 𝒴𝐵4

]︃[︃
V𝑠

V𝑛𝑠

]︃
. (2.170b)

A graphical interpretation of (2.170) is given in Fig. (2-44), where a time domain
power system model is contrasted to its frequency domain perturbative model.

A simple Kron reduction can be performed in order to determine the effective
admittance “seen” by the current source:

−ℐ ′ =
(︀
𝒴 ′

𝐵1 − 𝒴𝐵2𝒴−1
𝐵4𝒴𝐵3

)︀⏟  ⏞  
𝒴𝑁

V𝑠, (2.171)

where 𝒴𝑁 ∈C2×2 is an aggregate network admittance matrix and V𝑠 is the resulting
voltage caused by the current injection ℐ ′ interacting with the aggregate network
dynamics codified in 𝒴𝑁 . In this model, since voltage perturbations are considered
a response to rouge current injections, it is helpful to rewrite (2.171) with voltage as
a function of current, i.e. V𝑠 = −𝒵𝑁ℐ ′, where 𝒵𝑁 = 𝒴−1

𝑁 is the aggregate network
impedance. In other words, the current injection ℐ ′ gives rise to the network voltages,
and the vector V𝑏 in (2.170a) is not arbitrary: the Kron reduction of (2.171) is
only meaningful when V𝑏 acts as a solution to the linear system −J′ = 𝒴 ′

𝐵V𝑏, i.e.
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Figure 2-44: Panel (a) shows a model of the IEEE 39-bus power system in the time
domain, where blue circles are generators, green arrows are loads, and an oscillation
source is located in the upper left corner. Panel (b) shows the same system in the
frequency domain, at Ω = Ω𝑑, where loads, generators and sources have become
admittances, and the oscillation source has been transformed into a current injection
ℐ, which excites the entire circuit. Accordingly, panel (b) is entirely analogous to an
AC circuit in oscillatory steady-state excited by a single current injection source.
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V𝑏 = −(𝒴 ′
𝐵)−1J′.

Definition 6. We refer to the admittance matrix 𝒴𝑁 of (2.171) as the system’s
dynamic Ward equivalent (DWE) admittance.

Quadratic “Energy” Considerations in the Perturbative Network

As with any network which obeys Kirchhoff’s laws, Tellegen’s theorem is also obeyed:
the sum of the products of branch (including shunt branches) potential differences
and branch flows is equal to 0. Accordingly,

0 = (𝐸𝑎V𝑏)
† I𝑙 + V†

𝑏 (I𝑠 + J) (2.172a)

= V†
𝑏

(︀
𝐸†

𝑎I𝑙 + I𝑠 + J
)︀

(2.172b)

= V†
𝑏 (𝒴𝐵 − 𝒴𝐵)V𝑏, (2.172c)

where (2.172a) is the statement of Tellegen’s theorem, (2.172b) is the conservation of
current, and (2.172c) is the resulting proof. As a consequence of this theorem, there
exist a family of quadratic functionals for which conservation laws can be formulated.
An obvious one is the “real power”, Re{VI†}, that is consumed only on the elements
with positive resistance. In the context of FOs, an alternative interpretation of the
conservation of power can be acquired by manipulating (2.170b) in order to define
another (arbitrary) type of quadratic power12. The key observation is that this new
quadratic power will be conserved throughout the network. To show why, we consider
matrix 𝒬 ∈ C2𝑛×2𝑛 with block diagonal sub-matrices 𝒬𝑏 ∈ C2×2:

𝒬 =

⎡⎢⎣ 𝒬𝑏 0
. . .

0 𝒬𝑏

⎤⎥⎦ . (2.173)

We now left multiply (2.170a) by V†
𝑏𝒬, which represents the application of a quadratic

energy function:

−V†
𝑏𝒬J

′ = V†
𝑏𝒬𝒴

′
𝐵V𝑏 (2.174a)

−V†
𝑠𝒬𝑏ℐ ′ = V†

𝑏

(︀
𝒬𝐸†

𝑎𝒴𝐿𝐸𝑎

)︀
V𝑏 + V†

𝑏 (𝒬𝒴 ′
𝑆)V𝑏. (2.174b)

12The term “quadratic power” is used since we are multiplying voltages and currents, but the
quadratic quantity doesn’t necessarily have the interpretation of physical power. It can also be
interpreted as an “energy function”. Quadratic energy and quadratic power are therefore used inter-
changeably.
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Different choices for matrix 𝒬𝑏 correspond to different energy function applications,
but in each case, the quadratic quantity is conserved. For example, if 𝒬𝑏 is chosen
such that

𝒬𝑏 =

[︃
0 − 1

jΩ
1
jΩ

0

]︃
, (2.175)

then the associated energy function corresponds to the DEF method [40]. Under DEF
assumptions, lines and loads are rendered lossless, i.e (𝒬𝑏𝒴) + (𝒬𝑏𝒴)† = 0. Thus, in
taking the real part, (2.174b) simplifies to

Re{V†
𝑠𝒬𝑏ℐ ′}⏟  ⏞  

Source Energy

+
𝑛∑︁

𝑖=2

Re{V†
𝑛𝑠,𝑖 (𝒬𝑏𝒴𝑠,𝑖)V𝑛𝑠,𝑖}⏟  ⏞  

Generator Damping Contributions

= 0, (2.176)

where V𝑠 and V𝑛𝑠,𝑖 are the source and 𝑖th non-source bus voltage perturbation vectors,
respectively. The formulation of (2.176) further clarifies the DEF’s functionality:
since all the damping energy consumed by generators is positive [40], the source
energy is necessarily negative and can be traced back to the single, negative source.
The DEF technique, therefore, is based on tracking a particular type of quadratic
power in the network. When constructing the system’s quadratic energy function,
we are not restricted to choosing just a 𝒬 matrix. We may also introduce matrix
𝒫 whose structure matches 𝒬. For example, we may set U𝑏 = 𝒫−1V𝑏, left multiply
(2.170a) by U†

𝑏𝒬, and insert a 𝒫𝒫−1 term. Updating (2.176) yields

Re{U†
𝑠𝒬𝑏ℐ ′}⏟  ⏞  

Source Energy

+
𝑛∑︁

𝑖=2

Re{U†
𝑛𝑠,𝑖 (𝒬𝑏𝒴𝑠,𝑖𝒫𝑏)U𝑛𝑠,𝑖}⏟  ⏞  

Generator Damping Contributions

= 0. (2.177)

Energy Function Analysis

The DEF method can be interpreted as the application of a specific quadratic energy
function to all elements of a network. Reference [40], though, shows that the DEF
energy function is inadequate for lossy network elements. While it may be tempting
to develop a new DQR-transformation which is suitable for lossy networks, in this
section, we prove that no constant quadratic energy function exists for the classical
model of a multimachine power system. For coherency, we first offer the following
clarification of how we use the terms “lossy” and “lossless” in this section.
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Definition 7. In keeping with the conventional nomenclature for both power systems
and dissipativity literature, we offer the following definitions for lossy and lossless:

• Lossy: A lossy element is an element which contains resistance; a lossy system
is a system which contains resistive transmission lines.

• Lossless13: The term lossless describes a FRF whose Hermitian part is 0. If
𝒴 + 𝒴† = 0, 𝒴 is said to be lossless; if M𝒴 + (M𝒴)† = 0, M𝒴 is said to be
lossless. This is further specified just below relation (2.23) in the background.

Basis Matrices

To aide in the energy function analysis and inference techniques, we define a useful
set of basis matrices.

Definition 8. We define orthogonal (𝐴−1 =𝐴†) basis matrices

𝑇 1 =

[︂
1 0
0 1

]︂
, 𝑇 2 =

[︂
1 0
0 −1

]︂
,

𝑇 3 =

[︂
0 1
1 0

]︂
, 𝑇 4 =

[︂
0 −1
1 0

]︂
,

and the set T = {𝑇 1, 𝑇 2, 𝑇 3, 𝑇 4}. Set T spans region R2×2:

span (T) =

{︃
4∑︁

𝑖=1

𝜆𝑖𝑇 𝑖

⃒⃒⃒⃒
⃒𝑇 𝑖 ∈ T, 𝜆𝑖 ∈ R1

}︃
= R2×2. (2.179)

Lemma 4. There exists no non-singular matrix Γ ∈ C2×2 for which, simultaneously,

Re
{︀
v† (︀𝑇 𝑖Γ

)︀
v
}︀
≥ 0, ∀v ∈ C2×1, ∀𝑖 ∈ {1} (2.180)

Re
{︀
v† (︀𝑇 𝑖Γ

)︀
v
}︀

= 0, ∀v ∈ C2×1, ∀𝑖 ∈ {2, 3, 4}. (2.181)

Proof. We write Γ as the sum of its diagonal (Γ𝑑) and off-diagonal (Γ𝑜) component
matrices: Γ = Γ𝑑 + Γ𝑜. Since Re{v†(𝑇 𝑖Γ)v} = 0, ∀v ∈ C2×2 is equivalent to stating
that 𝑇 𝑖Γ + (𝑇 𝑖Γ)† = 0, the constraints on Γ caused by 𝑇 2, 𝑇 3, and 𝑇 4 from (2.181)
may be stated as

𝑇 2 → Γ𝑑 = −Γ†
𝑑, Γ𝑜 = Γ†

𝑜, (2.182)

𝑇 3 → 𝐾Γ𝑑 = −Γ†
𝑑𝐾, 𝐾Γ𝑜 = −Γ†

𝑜𝐾, (2.183)

𝑇 4 → 𝐾Γ𝑑 = Γ†
𝑑𝐾, 𝐾Γ𝑜 = −Γ†

𝑜𝐾, (2.184)
13While “lossless” certainly can also refer to a transmission network with purely reactive lines, we

do not invoke that definition anywhere in this section.
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where 𝐾 ≡ 𝑇 3 is defined to be the reversal matrix in [89]. Accordingly, Γ𝑑 must be si-
multaneously skew-Hermitian, skew-perhermitian and perhermitian, respectively [89].
Necessarily, Γ𝑑 = 0. The matrix Γ𝑜 must be simultaneously Hermitian and skew-
perhermitian. Necessarily, j𝛽𝑇 4, 𝛽∈ R1, is the only matrix which fits this description.
We define

Γ⋆ = j𝛽𝑇 4 (2.185)

as the only matrix which uniformly satisfies (2.181). We apply Γ = Γ⋆ to (2.180) and
consider the eigenvalues of the matrix 𝑇 1Γ

⋆ +
(︀
𝑇 1Γ

⋆
)︀†

= 2𝛽j𝑇 4:

det
[︀
2𝛽j𝑇 4 − diag{𝜆}

]︀
= 𝜆2 − 4𝛽2, (2.186)

𝜆 = ±2𝛽 (2.187)

which violates (2.180). Since 𝑇 1Γ
⋆+(𝑇 1Γ

⋆)† is an indefinite matrix but Γ⋆ is the only
matrix which satisfies (2.181), the theorem has been proved.

Corollary 1. Γ⋆ is a solution to 𝑃Γ⋆ + (𝑃Γ⋆)† = 0 for any matrix 𝑃 which may be
written as 𝑃 =

∑︀4
𝑖=2 𝛼𝑖𝑇 𝑖, 𝛼𝑖∈R1.

Corollary 2. The results of Lemma 4 stand if 𝑇 𝑖 is right multiplied by transformation
matrix M instead of left multiplied by transformation matrix Γ. There exists no non-
singular matrix M ∈ C2×2 for which the following simultaneously hold:

Re
{︀
v† (︀M𝑇 𝑖

)︀
v
}︀
≥ 0, ∀v ∈ C2×2, ∀𝑖 ∈ {1} (2.188)

Re
{︀
v† (︀M𝑇 𝑖

)︀
v
}︀

= 0, ∀v ∈ C2×2, ∀𝑖 ∈ {2, 3, 4} (2.189)

Corollary 3. By employing both non-singular matrices Γ ∈ C2×2 and M ∈ C2×2, the
solution to

Re
{︀
v† (︀M𝑇 𝑖Γ

)︀
v
}︀

= 0, ∀v ∈ C2×1, ∀𝑖 ∈ {2, 3, 4} (2.190)

must take the form Γ = (j𝛽𝑇 4)M
† for any M ∈ C2×2. This may be seen via the

following manipulation:

0 = M𝑇 𝑖Γ + (M𝑇 𝑖Γ)†, ∀𝑖 ∈ {2, 3, 4} (2.191a)

= 𝑇 𝑖(ΓM
†−1

) + (M−1Γ†)𝑇
†
𝑖 , ∀𝑖 ∈ {2, 3, 4}. (2.191b)

Since (2.191b) may only be solved by ΓM†−1
= j𝛽𝑇 4, per Lemma 4, we have that

Γ = (j𝛽𝑇 4)M
† must be satisfied.
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Quadratic Energy Functions in a Classical Power System

We now assume the classical model of a lossy multimachine power system model [13]
and allow for constant power loads to be present. The forms of the FRFs associated
with constant power loads (𝒴𝑝), constant impedance lines/shunts (𝒴𝑧), and classical
generators (𝒴𝑔) are given by (2.133)-(2.135). The set of plausible FRFs associated
with these three elements may be constructed according to the following basis matrix
combinations:

𝒴𝑝 =
∑︁
𝑖=2, 3

𝑎𝑖𝑇 𝑖, 𝑎𝑖∈R1 (2.192a)

𝒴𝑧 =
∑︁
𝑖=1, 4

𝑎𝑖𝑇 𝑖, 𝑎𝑖∈R1 (2.192b)

𝒴𝑔 =
∑︁

𝑖=2, 3, 4

(𝑎𝑖 + j𝑏𝑖)𝑇 𝑖, 𝑎𝑖, 𝑏𝑖∈R1. (2.192c)

In Appendix A.5, we prove that the classical generator admittance model, for a given
frequency, can be constructed with only four coefficients. Notwithstanding, we now
prove that a perturbative system model containing elements (2.192a)-(2.192c) cannot
be rendered DQR under any quadratic DQR-transformation. In other words, there is
no quadratic quantity that is dissipated by all elements present in common networks.

Theorem 2. There exist no non-singular matrices M ∈ C2×2 and Γ ∈ C2×2 for which

M𝒴Γ + (M𝒴Γ)† ⪰ 0, ∀𝒴 ∈ {𝒴𝑝, 𝒴𝑧, 𝒴𝑔} . (2.193)

Proof. The FRF of a strictly reactive element, such as matrix 𝑇𝑋 in (2.135), is ∝
𝑇 4 while the FRF of a strictly capacitive element is ∝ −𝑇 4. The only way for
M𝑇 4Γ +

(︀
M𝑇 4Γ

)︀† ⪰ 0 and −M𝑇 4Γ −
(︀
M𝑇 4Γ

)︀† ⪰ 0 to be simultaneously true is
for M𝑇 4Γ +

(︀
M𝑇 4Γ

)︀† ≡ 0. Since both reactive and capacitive elements appear in
classical power systems, 𝑇 4 must be lossless under the desired DQR-transformation.

We now consider some classical generator whose damping characteristics are suf-
ficiently small (𝐷 ≈ 0), such that 𝛾 is a real parameter. In this case, the matrix
M𝒴𝑔Γ + (M𝒴𝑔Γ)† reduces to M𝛾𝑇𝛿Γ + (M𝛾𝑇𝛿Γ)† since 𝑇𝑋 must be a lossless ele-
ment according to the previous conclusion about 𝑇 4.

We define the squared electromechanical resonant frequency associated with the
classical generator as Ω2

r = VE′

𝑀𝑋′
𝑑

cos(𝜙). For some 𝜖, 𝛾(Ωr − 𝜖) = −𝛾(Ωr + 𝜖). We

must therefore ensure that M𝛾𝑇𝛿Γ + (M𝛾𝑇𝛿Γ)† ⪰ 0 and −M𝛾𝑇𝛿Γ− (M𝛾𝑇𝛿Γ)† ⪰ 0,
respectively, when ensuring the generator is DQR on either side of the resonant peak.
The only way for these statements to be simultaneously true is for M𝑇𝛿Γ+(M𝑇𝛿Γ)† ≡
0. To accomplish this, we consider the numerical structure of 𝑇𝛿 for two plausible
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rotor angle values: 𝛿1 = 0 and 𝛿2 = 𝜋
4
:

𝑇𝛿 (𝛿1) =

[︂
0 −1
0 0

]︂
=

1

2

(︀
𝑇 4 − 𝑇 3

)︀
, (2.194)

𝑇𝛿 (𝛿2) =

[︂
1
2
−1

2
1
2
−1

2

]︂
=

1

4

(︀
𝑇 2 + 𝑇 4

)︀
. (2.195)

Since M𝑇 4Γ +
(︀
M𝑇 4Γ

)︀† ≡ 0, then we must also require M𝑇 3Γ +
(︀
M𝑇 3Γ

)︀† ≡
0 from (2.194) and M𝑇 2Γ +

(︀
M𝑇 2Γ

)︀† ≡ 0 from (2.195) in order to ensure that
M𝑇𝛿Γ + (M𝑇𝛿Γ)† ≡ 0. We are thus requiring that Re

{︀
ṽ† (︀M𝑇 𝑖Γ

)︀
ṽ
}︀

= 0, ∀ṽ ∈
C2×1, ∀𝑖 ∈ {2, 3, 4}. As stated in Corollary 3, the only way to achieve losslessness for
basis matrices 2, 3 and 4 is for Γ = (j𝛽𝑇 4)M

†. By employing this transformation,
Lemma 4 proves that the quadratic energy associated with any element containing
𝑇 1 will be rendered indefinite in sign. Since (2.192b) contains 𝑇 1 when resistance is
present in the network, then there exists no nonsingular matrices M and Γ for which
M𝒴Γ + (M𝒴Γ)† ⪰ 0, ∀𝒴 ∈ {𝒴𝑝, 𝒴𝑧, 𝒴𝑔}.

Corollary 4. By choosing M = 𝑇 1, 𝛽 = −1
Ω

, and Γ = (j𝛽𝑇 4)M
†, we arrive at the

DQR-transformation implicitly employed by the DEF.

Corollary 5. Without resistive elements, the DEF method is a fully reliable source
location technique in classical power systems.

Corollary 6. Since the linearized admittance matrix 𝒴 associated with any ZIP load
is purely real, i.e. 𝒴 = Re{𝒴}, the eigenvalues of its transformed Hermitian part will
be equal and opposite in value: 𝜆(M𝒴Γ + (M𝒴Γ)†) = ±𝛼, where 𝛼 = 0 for constant
power or purely reactive loads.

If a network has no resistive elements and is truly DQR, no quadratic energy
production can occur on regular network elements, so injections of energy have to be
related to external sources, like FOs. This is why finding a DQR energy-like form is
important, and why the “almost-DQR” form used by DEF has had so much success.
To further show why the results of Theorem 2 are problematic for the DEF method,
we consider the structure of (2.176): since the generator damping contributions are
positive definite, the source energy is necessarily negative in a power system with no
resistance. This is not true in a lossy power system. To show why not, we define
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block matrices M ∈ C2𝑛×2𝑛 and Γ ∈ C2𝑛×2𝑛, where

M =

⎡⎢⎣ M 0
. . .

0 M

⎤⎥⎦ , Γ =

⎡⎢⎣ Γ 0
. . .

0 Γ

⎤⎥⎦ ,

and whose block diagonal matrices are given by M and Γ = (j𝛽𝑇 4)M
†, respectively.

We left multiply (2.170a) by M and insert ΓΓ−1 on the RHS:

−MJ′ = M
(︀
𝐸†

𝑎𝒴𝐿𝐸𝑎 + 𝒴 ′
𝑆

)︀
ΓΓ−1V𝑏. (2.196)

Defining the transformed voltage vectors U𝑏 = Γ−1V𝑏 and U𝑠 = Γ−1V𝑠, we left
multiply (2.196) by U†

𝑏 and simplify. We may group the dissipating power injections
into their respective contributing groups (assuming lossless loads):

0 = U†
𝑠Mℐ ′⏟  ⏞  

Source

+U†
𝑏(M𝒴

′
𝑆Γ)U𝑏⏟  ⏞  

Generator

+U†
𝑏(M𝐸†

𝑎𝒴𝐿𝐸𝑎Γ)U𝑏⏟  ⏞  
Network

. (2.197)

The FO source term can produce only negative damping energy, i.e. Re{U†
𝑠Mℐ ′}<0,

if the condition

M
(︀
𝒴 ′

𝑆+𝐸†
𝑎𝒴𝐿𝐸𝑎

)︀
Γ +

(︀
M
(︀
𝒴 ′

𝑆+𝐸†
𝑎𝒴𝐿𝐸𝑎

)︀
Γ
)︀†≻ 0 (2.198)

is met. If it is not met, indefinitely signed resistive energy can dominate damper
winding energy absorption and the source term can, in fact, appear as a positively
damped element. In this plausible situation, the DEF method will fail. We note that
violation of (2.198) is a necessary but not sufficient condition for DEF failure. Next,
we explore these failure conditions more closely. First, we offer a definition of an
associated system.

Definition 9. Consider classical power system Σ𝑐 with ZIP loads, DQR generators,
and a lossy transmission network. This system’s voltage vector V𝑏 is V𝑏 = V⌢

𝑠 V𝑛𝑠,
where V𝑛𝑠 = −𝒴−1

4 𝒴3V𝑠 from (2.170b). All voltage vectors are transformed such that
U = Γ−1V. The Kron reduced admittance (DWE) seen by a FO source is 𝒴𝑁 as in
(2.171). The matrix N𝑐 = 1

2
(M𝒴𝑁Γ) + 1

2
(M𝒴𝑁Γ)†, with matrices M and Γ from

Corollary 3, will have two eigenvalues: 𝜆1 and 𝜆2.

Theorem 3. Consider N𝑐 from Σ𝑐:
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(𝑎) If condition (2.198) is met, 𝜆1, 𝜆2 > 0.

(𝑏) If Re{U†
𝑠Mℐ ′} > 0 is measured, i.e. the DEF method has failed, condition

(2.198) is violated and 𝜆1 ∨ 𝜆2 < 0.

Proof. By modifying (2.197), we have −U†
𝑠Mℐ ′ = U†

𝑏M(𝒴 ′
𝑆 +𝐸†

𝑎𝒴𝐿𝐸𝑎)ΓU𝑏, and
with condition (2.198) met, −U†

𝑠Mℐ ′ > 0. Since −ℐ ′ = 𝒴𝑁V𝑠, we have that
U†

𝑠M𝒴𝑁ΓU𝑠 > 0 by substitution, implying that 𝜆{(M𝒴𝑁Γ) + (M𝒴𝑁Γ)†} > 0, ∀𝜆 ∈
{𝜆1, 𝜆2}, proving proposition (𝑎).

If Re{U†
𝑠Mℐ ′} > 0, then U†

𝑠N𝑐U𝑠<0 is directly implied. Accordingly, 𝜆1∨𝜆2 < 0.
By the conservation argument presented in the proof of proposition (𝑎), if U†

𝑠N𝑐U𝑠<0,
then Re{U†

𝑏M(𝒴 ′
𝑆 +𝐸†

𝑎𝒴𝐿𝐸𝑎)ΓU𝑏} < 0 implying the violation of condition (2.198),
proving proposition (𝑏).

The effects of energy injections from resistive networks are further considered in
Appendix A.6. These results, though, are not explicitly utilized in the following
practical application subsection, so they are relegated to the appendix.

2.4.3 Practical Applications of the DQR Analysis

We now expound upon three practical applications of the analysis presented in this
subsection. First, we explicitly state how to implement the DEF source location
method via the proposed frequency domain methods. Second, we show how system
operators can use the proposed framework to predict how the DEF method will
perform in their respective networks without performing simulations. And third, we
explain how the tools in this section can be used to understand how the addition
of new grid components will affect performance of the DEF method. In all further
analysis, we assume M = −j𝑇 4.

Energy Flow Calculations in the Frequency Domain

In order to compute the dissipating power signal 𝑃 ⋆ in a system which is experiencing
a FO event, we convert voltage and current PMU data into rectangular coordinates.
Next, we take the FFT of these signals, thus constructing Ṽ(Ω) = [𝑉r(Ω), 𝑉i(Ω)]𝑇

and Ĩ(Ω) = [𝐼r(Ω), 𝐼i(Ω)]𝑇 at all relevant buses and lines. Finally, we evaluate these
signals at the forcing frequency Ω𝑑 in order to compute the dissipating power injection
at each bus or flow along each line:

𝑃 ⋆ = Re{Ṽ(Ω𝑑)
†MĨ(Ω𝑑)}. (2.199)
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Positive 𝑃 ⋆ flowing out of an element indicates the presence of a non-DQR component
(typically a FO source). We refer readers to Appendix A.2 for a discussion on the
difficulties of dealing with rectangular coordinates in a realistic power system. Using
this procedure, a map, such as the one presented in Fig. 2-46, can be constructed.

Predicting Performance of DEF Source Location

The implicit goal of the DEF method is to locate the source of negative damping in
the system. When resistive elements are introduced to the network, the goal becomes
obfuscated because the source may appear DQR, and thus, positively damped. By
Remark 13 though, the negative DWE of the source cannot be physically DQR. A key
contribution of this section recognizes that while generators continue to be physically
DQR, the source only appears14 DQR when the DEF method fails in a classical power
system.

Before system operators can consistently rely on using the DEF method for FO
source location, it is important that they first test if the method will perform ad-
equately in their respective networks. Algorithm 2.4.3 clarifies the exact analytical
procedure which can be used to test if the DEF method will perform successfully for
any given bus in the network at any given FO frequency. We note that this off-line
analysis in not restricted to classical power systems: any system component can be
incorporated so long as its dynamics can be analytically approximated and linearized.
Additionally, the type of oscillation source is entirely arbitrary: the methods in Algo-
rithm 2.4.3 predict the sign of the energy flowing from the source bus terminal as a
function of how the system dynamically responds to the abstracted oscillation signal.
It is thus similar to testing if condition (2.198) is violated.

Analysis of Additional Grid Components

Until this point in the section, only the elements of a lossy classical power system
have been considered, but it is important for system operators to consider how the
addition of new elements will effect energy-based source location methods. If newly
added elements are non-DQR, it is also important for system operators to test the
degree of allowed penetration from these elements before energy-based source location
methods will fail. In this subsection, we present examples of DQR analysis applied
to three non-classical elements: frequency dependent loads, droop-controlled inverter

14The transformed FRF will have one positive and one negative eigenvalue.
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Algorithm 3 Reliability Test for Energy Flow Methods
START
1: Construct nonlinear model (2.57) for all shunts and linearize to build admittance (2.59)
2: Construct shunt matrix (2.162), incidence matrix (2.158) and line matrix (2.160)
3: Construct dynamic nodal admittance (2.167)
4: for each plausible FO frequency Ω𝑑 do
5: for each plausible source bus 𝑖 do
6: Remove shunt admittance 𝒴𝑠,𝑖 from 𝒴𝑆
7: Partition network via (2.170) and Kron reduce via (2.171) to construct 𝒴𝑁
8: Compute 𝜆1,2 = 𝜆{M𝒴𝑁 + (M𝒴𝑁 )†}
9: Assume bus 𝑖 generates FO of frequency Ω𝑑:

10: if 𝜆1, 𝜆2 ≥ 0 then
11: ∙ DEF will succeed
12: else if 𝜆1, 𝜆2 ≤ 0 then
13: ∙ DEF will be fail
14: else
15: ∙ DEF will perform unreliably

end
end

end

systems, and third order synchronous generators with first order Automatic Voltage
Regulators (AVRs).

Frequency Dependent Load: Assuming power is an instantaneous function of
voltage magnitude and frequency [129], we may write 𝑃 (𝑡) and 𝑄(𝑡) via

𝑃 (𝑡) = 𝑃0 (V/V0)
𝛼𝑝 (𝜔/𝜔0)

𝛽𝑝 (2.200a)

𝑄(𝑡) = 𝑄0 (V/V0)
𝛼𝑞 (𝜔/𝜔0)

𝛽𝑞 , (2.200b)

where 𝜔 = 𝜔0 + 𝜃. Since we are interested in the linearized responses of (2.200a) and
(2.200b), we evaluate their partial derivatives at equilibrium (V0, 𝜔0= 1).[︃

∆𝑃

∆𝑄

]︃
=

[︃
𝑃0 0

0 𝑄0

]︃[︃
𝛼𝑝

V0
𝛽𝑝

𝛼𝑞

V0
𝛽𝑞

]︃[︃
∆V

∆𝜔

]︃
. (2.201)

Assuming sinusoidal perturbations, phasor notation yields[︃
𝑃

𝑄̃

]︃
⏟  ⏞  

S̃

=

[︃
𝛼𝑝

V0
𝑃0 𝛽𝑝𝑃0

𝛼𝑞

V0
𝑄0 𝛽𝑞𝑄0

]︃
⏟  ⏞  

𝒴𝑎

[︃
1 0

0 j

]︃
⏟  ⏞  

𝐼𝑗

[︃
Ṽ

𝜃

]︃
⏟  ⏞  

Ṽ𝑝

(2.202)
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where 𝜔̃ = j𝜃. Employing matrix T1 from Appendix A.2, we transform from polar
to rectangular via Ṽ = T1Ṽ𝑝 in (2.202):

S̃ = 𝒴𝑎𝐼𝑗T
−1
1 Ṽ. (2.203)

We next consider perturbations of 𝑃 = 𝑉r𝐼r + 𝐼𝑖𝑉𝑖 and 𝑄 = 𝑉𝑖𝐼r− 𝑉r𝐼𝑖. Treating 𝑉𝑖/𝑟

and 𝐼𝑖/𝑟 as steady state values, we linearize and convert to phasor notation:[︃
𝑃

𝑄̃

]︃
=

[︃
𝐼r 𝐼i

−𝐼i 𝐼r

]︃
⏟  ⏞  

𝐴𝐼

[︃
𝑉r

𝑉i

]︃
⏟  ⏞  

Ṽ

+

[︃
𝑉r 𝑉i

𝑉i −𝑉r

]︃
⏟  ⏞  

𝐴𝑉

[︃
𝐼r

𝐼i

]︃
⏟  ⏞  

Ĩ

. (2.204)

By equating (2.203) and (2.204), Ĩ and Ṽ are directly related by

Ĩ = 𝐴−1
𝑉

(︀
𝒴𝑎𝐼𝑗T

−1
1 − 𝐴𝐼

)︀⏟  ⏞  
𝒴𝑏

Ṽ. (2.205)

Finally, we set 𝛼𝑝 = 𝛼𝑞 = 0 to isolate the effects of frequency, and we compute
eigenvalues 𝜆1,2 = 𝜆{M𝒴𝑏 + (M𝒴𝑏)

†}:

𝜆1,2 =
𝛽𝑝 cos(𝜙)±

√︁
𝛽2
𝑝

2
(1+cos(2𝜙))+

𝛽2
𝑞

2
(1−cos(2𝜙))

I/V
. (2.206)

where 𝜙 = 𝜃 − 𝜑. In setting 𝛽 ≡ 𝛽𝑝 ≈ 𝛽𝑞, (2.206) simplifies to

𝜆1,2 = 𝛽(cos(𝜙)± 1)V/I. (2.207)

Since power factor is usually close to unity, this case of frequency dependent load
is primarily DQR for 𝛽 > 0 because the positive eigenvalue will be far larger than
the negative eigenvalue. Otherwise, if 𝛽𝑝 = 0, then the load behaves like a resistor
(equal and opposite eigenvalues), but if instead 𝛽𝑞 = 0, then the load is truly DQR
for reasonable values of power factor.

Droop-controlled Inverter: We consider the dynamics of a droop-controlled in-
veter circuit; such circuits have the potential to dominate distributed energy resource
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interconnections. As given by the inverse of (3.15), the circuit’s impedance is

𝒵 =

[︃
𝑅𝑐 + jΩ𝐿𝑐 −𝑋𝑐 − 𝑘𝑞

1+j𝜏Ω

𝑋𝑐 − 𝑘𝑝
𝜏Ω2−jΩ

𝑅𝑐 + jΩ𝐿𝑐

]︃
, (2.208)

where 𝑘𝑝 and 𝑘𝑞 are the active and reactive power droop coefficients, and 𝑅𝑐 is the
coupling resistance. We seek to analyze the dissipativity of this system. Rather then
invert (2.208), we consider the dissipativity of the impedance 𝒵 directly. Appendix
A.3 establishes the equivalence of dissipativity classifications between an admittance
𝒴 and its associated impedance 𝒵 = 𝒴−1 for transformation matrix M. We thus
compute the Hermitian part of M𝒵:

M𝒵 + (M𝒵)† = 2

[︃
𝑘𝑝

Ω((𝜏Ω)2+1)
j𝑅𝑐

−j𝑅𝑐
𝑘𝑞𝜏Ω

(𝜏Ω)2+1

]︃
. (2.209)

Since 𝜏 , Ω, and the droop coefficients are all positive, if 𝑅𝑐 is small, then the eigen-
values of (2.209) are simply

𝜆1,2 ≈
{︂
𝑘𝑝

2

Ω((𝜏Ω)2 + 1)
, 𝑘𝑞

2𝜏Ω

(𝜏Ω)2 + 1

}︂
(2.210)

and the system is effectively DQR. If 𝑅𝑐 is not neglected, though, the eigenvalue
expressions become more cumbersome. Using the parameter values suggested in [182],
we plot 𝜆1 and 𝜆2 as 𝑅𝑐 is scaled via 𝑅𝑐 = 𝛼𝑋𝑐, 𝛼 ∈ {0, 0.05, 0.1, 0.15, 0.2}, for
the matrix M𝒴 + (M𝒴)† (we plot admittance eigenvalues rather than impedance
eigenvalues solely for graphical clarify). Fig. 2-45 shows the eigenvalues. Clearly,
as coupling resistance decreases in value, the inverter behaves more DQR. The DEF
method will thus perform more successfully when virtual + coupling resistance is
minimized.

Third Order Generator with First Order AVR: We consider the dynamics of
a third order synchronous machine with a first order ARV. The associated model [129]
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Figure 2-45: Plot of the eigenvalues of M𝒴 + (M𝒴)†, where 𝒴 is associated with the
dynamics of a droop-controlled inverter. For 𝛼 = 0, the system is fully DQR since
both eigenvalues are positive.

is stated by

𝛿̇ = ∆𝜔 (2.211a)

𝑀∆𝜔̇ = 𝑃𝑚 − 𝑃𝑒 −𝐷∆𝜔 (2.211b)

𝑇 ′
𝑑0𝑒̇

′
𝑞 = 𝐸𝑓 − (𝑋𝑑 −𝑋 ′

𝑑)𝑖𝑑 − 𝑒′𝑞 (2.211c)

𝑇𝑎𝐸̇𝑓 = 𝐾𝑎(Vr − V)− 𝐸𝑓 , (2.211d)

where Vr is the voltage reference set point, V𝑒j𝜃 is the terminal voltage phasor,
𝑖𝑑 = (𝑒′𝑞 − 𝑒𝑞)/𝑋

′
𝑑, 𝑖𝑞 = 𝑒𝑑/𝑋𝑞, 𝑒𝑑 = V sin(𝛿 − 𝜃) and 𝑒𝑞 = V cos(𝛿 − 𝜃). Finally,

𝑃𝑒 = 𝑒𝑑𝑖𝑑 + 𝑖𝑞𝑒𝑞. We define output power variables 𝑃 and 𝑄 as 𝑃 = −𝑃𝑒 and
𝑄 = −(𝑖𝑑𝑒𝑞 − 𝑖𝑞𝑒𝑑)

15.
In order to make analytical claims about the dissipativity of (2.211), we leverage

the alternative DEF interpretation proposed in Appendix A.4. To make the analysis
tractable, we choose to linearize the model about the generator’s unloaded equilibrium
point (i.e. 𝜃=𝛿, V=𝑒𝑞, 𝑒𝑑 =0, etc.). Although this configuration may be uncommon,
the resulting linearized dynamics are sufficiently simplified for approximating genera-
tor dissipativity. Additionally, the resulting admittance matrix ℋ is diagonal, so the
eigenvalues of K†ℋ + (K†ℋ)† are trivial. We compute ℋ from Appendix A.4:

ℋ=

⎡⎣ Ω(j𝑀Ω+𝐷)
𝐷𝑋𝑞Ω+j(𝑀𝑋𝑞Ω2−1)

0

0
𝐾𝑎+1−Ω2𝑇𝑎𝑇 ′

𝑑0+jΩ(𝑇𝑎+𝑇 ′
𝑑0)

(Ω𝑇𝑎−j)(𝑋𝑑j−Ω𝑇 ′
𝑑0𝑋

′
𝑑)

⎤⎦. (2.212)

15In keeping with the conventions of Section 2.4.2, positive currents flow from the network and
into the machine.
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Taking the eigenvalues of K†ℋ+ (K†ℋ)† is equivalent to taking the imaginary parts
of the diagonals of matrix ℋ. The relationship between 𝑃 and 𝜃 (i.e. 𝜆1) is thus
DQR if Ω𝐷 ≥ 0. This will be true if damping 𝐷 is positive. Interestingly, when the
generator is unloaded, the damping provided by the field winding is of second order
and thus has no mathematical impact on dissipativity between 𝑃 and 𝜃. Via (2.212),
the relationship between 𝑄̃ and Ṽ (i.e. 𝜆2) is thus DQR if

(︀
𝑇 ′
𝑑0Ω

2𝑇 2
𝑎 +𝑇 ′

𝑑0

)︀
(𝑋𝑑−𝑋 ′

𝑑)−𝐾𝑎(𝑇
′
𝑑0𝑋

′
𝑑+𝑋𝑑𝑇𝑎)≥0. (2.213)

This result has many interesting interpretations. For 𝐾𝑎 small or 𝑇𝑎 sufficiently large,
the expression will always be DQR. Strong and fast AVR response thus causes the
relationship between 𝑄̃ and Ṽ to lose dissipativity. For dissipativity to be guaranteed
∀Ω, the AVR gain should have the upper bound

𝐾𝑎 ≤
𝑇 ′
𝑑0(𝑋𝑑 −𝑋 ′

𝑑)

𝑇 ′
𝑑0𝑋

′
𝑑 + 𝑋𝑑𝑇𝑎

. (2.214)

Of course, the claim that the generator will be DQR if 𝐷 ≥ 0 and (2.214) are both
satisfied is only true when the generator is unloaded. Loading effects are likely to
be small, though, so these results are useful for guiding intuition related to when
generators will lose dissipativity.

2.4.4 Test Results

In this section, we present test results which illustratively validate the framework pre-
sented in Sections 2.4.2 and 2.4.2 and the practical applications presented in Section
2.4.3. We perform these tests in two systems which are altered to engender poor DEF
performance. In the 39-bus New England system, the average R/X transmission line
ratio was increased from 6% to 15%, and in the 179-bus WECC system, all constant
power loads were converted into constant impedance loads. All simulation code is
posted online16 for open source access.

New England 39-bus Test System

Fig. 2-46 shows a diagram of the IEEE 39-bus New England system. In this system,
generators are modeled as third order synchronous machines [158] with first order

16https://github.com/SamChevalier/Passivity-Enforcement-FOs
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Figure 2-46: Dissipating power flow 𝑃 ⋆ in the IEEE 39-bus power system for an
applied FO of 2 Hz. All line resistance has been removed. Circles represent generators
while rounded rectangles represent loads. Line thickness and arrow size represent
dissipating power flow magnitude.

AVRs17. Initially, loads were modeled as constant power (PQ) and system lines
were modeled with no-loss (purely reactive). Following the steps in Algorithm 2.4.3,
we computed the eigenvalues associated with bus 31’s DWE 𝒴𝑁 for a frequency of
Ω𝑑 = 2𝜋 × 2:

𝜆
{︀
M𝒴𝑁 + (M𝒴𝑁)†

}︀
= 0.007, 2.11. (2.215)

Due to the two positive eigenvalues, any FO source originating at bus 31 with a fre-
quency of 2 Hz will appear non- DQR: the DEF method should perform accurately in
this system since condition (2.198) is satisfied. We then simulated the response of the
system to a 2Hz perturbation originating at bus 31. System excitation and simulation
were performed in the frequency domain. From the simulated data, dissipating power
𝑃 ⋆ was computed via (2.199) on all lines. The resulting flows are plotted in Fig. 2-46.
Clearly, the source is readily identifiable.

Next, the model was altered such that the average18 R/X ratio was increased
from 6% to 15% for all lines. Additionally, all loads were converted to the model

17The gains and time constants of these AVRs were chosen to approximate the full regulator +
exciter system model from [158].

18One outlier line, which has 𝑅 ≈ 𝑋, was excluded from this average.
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described by (2.200) with 𝛼 and 𝛽 parameters chosen randomly from 𝒰(0, 2). We
again considered the eigenvalues associated with bus 31’s DWE 𝒴𝑁 for a frequency
of Ω𝑑 = 2𝜋 · 2:

𝜆
{︀
M𝒴𝑁 + (M𝒴𝑁)†

}︀
= −2.52, +4.77 (2.216)

The oppositely signed eigenvalues show that the network can aggregately generate or
consume dissipating power 𝑃 ⋆, indicating unreliable DEF results. After computing
the system’s response to a 2Hz sinusoidal FO applied at bus 31’s generator, the
dissipating power 𝑃 ⋆ flowing in the network was plotted in Fig. 2-47. Based on arrow
directionality, all generators are shown to be 𝑃 ⋆ sinks : there is no apparent generator
source in the system. Loads present only a small contribution of dissipating power.
Although it may appear as though bus 6, for example, is a source, the dissipating
power flows are exactly conserved at this bus: all dissipating power flowing in from
lines 7-6, 5-6, and 11-6 exactly flows out on line 6-31.

The reason there are no apparent sources is due to the highly active nature of the
lines. For example, in the flow from bus 11 to bus 6, the sending end 𝑃 ⋆ is larger than
the receiving end 𝑃 ⋆ (based on arrow sizes), and given the flow direction, the line
is clearly a source of dissipating power. Similarly, on line 21-22, both arrows point
away from the line, indicating positive dissipating power flows out of both ends of the
line. Because condition (2.198) is not met in this network, the FO source is able to
act as a dissipating power sink. In other words, since the network is producing more
dissipating power than it can consume, the source provides additional “sink” slack.
Therefore, the source cannot be readily identified by a system operator.

As a second test, we reconsidered the no-loss system whose eigenvalues are char-
acterized by (2.215). At load buses 4, 8 and 16, we added identical droop-controlled
inverter circuits whose parameter values are specified in [182]. However, we intention-
ally neglected resistive losses (i.e. 𝑅𝑐 = 0). Next, we scaled the nominal droop gain
values of 𝑘𝑝 = 1.3 · 10−3 and 𝑘𝑞 = 7.5 · 10−3 by scalar 𝛼 ∈ [0 104]. For each system
configuration, the eigenvalues of the DWE seen at the source bus were computed per
Algorithm 2.4.3. The results, shown in Table 2.3, confirm the prediction of (2.210).
Across the full range of droop gain values, the eigenvalues of the source bus are both
positive. Therefore, these components do not interfere with DEF performance. When
losses are added back in, interference may occur.

As a final test on the 39-bus system, we again reconsidered the no-loss system
whose eigenvalues are characterized by (2.215). Instead of adding loss, we tripled all
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Figure 2-47: Dissipating power flow 𝑃 ⋆ in the lossy IEEE 39-bus power system. The
source of the FO cannot be located using the energy-based DEF method in this
situation.

Table 2.3: Eigenvalues of System with Droop-Controlled Inverters
𝛼=0 𝛼=100 𝛼=101 𝛼=102 𝛼=103 𝛼=104

𝜆1 0.007 0.007 0.008 0.01 0.05 0.4
𝜆2 2.11 2.11 2.12 2.17 2.80 28.04
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AVR gain values and decreased all AVR time constants by one third. Accordingly,

𝜆
{︀
M𝒴𝑁 + (M𝒴𝑁)†

}︀
= −0.1, +1.53. (2.217)

As evidenced by the slightly negative eigenvalue, these changes caused generator
dissipativity to be lost in at least some cases. This effect was predicted by (2.214).

WECC 179-bus Test System

In the second test, we employed the 179-bus WECC system which was prepared by
the IEEE Task Force on FOs [119]. Specifically, we employed test case number F1,
where a 0.86 Hz FO is applied to the reference signal in a generator’s AVR. We al-
tered the system by converting all loads to constant impedance with some frequency
dependence. We also applied Ornstein-Uhlenbeck noise on the load power terms 𝑃0

and 𝑄0 from (2.200a)-(2.200b). Due to the load model modification, the natural fre-
quencies of the system changed slightly. Thus, in order to engender better resonance,
we increased the frequency of the FO by 0.1Hz, and we increased the damping at the
source generator to ensure it acted as a FO sink in the DEF analysis. We simulated
the system for 120 seconds with Power System Analysis Toolbox (PSAT) [129]. To
show the strength of the resonance condition, we initially simulated the system with
no load noise and plotted the time domain frequency response 𝜔 of the system gen-
erators. Panel (a) of Fig. 2-48 shows that there are multiple generators with larger
frequency oscillations than the source. Panel (b) shows the frequency dynamics of
the system generators once load stochasticisticy is added.

Before investigating the dissipating energy flows in this large system, we first
sought to further experimentally validate the propagation framework proposed in
Section 2.4.2. To do so, we analytically constructed the full system model of (2.167).
As predicted by this model, the complex current injection vector J ∈ C2𝑛×1 from
(2.168) should be sparse: non-zero elements should only come from unmodeled, ex-
traneous perturbations. We thus simulated the WECC system with noisy loads and
a strong FO source at bus 4. We then collected all voltage PMU data, generated the
FFT evaluated at Ω𝑑 = 2𝜋× 0.96, constructed V𝑏 from (2.168) and the methods out-
lined in Appendix A.2, and predicted the current injection vector J via J = −𝒴𝐵V𝑏.
Since there are two complex current injection components associated with each bus,
we defined injection magnitude vector J ∈ R𝑛×1. Its 𝑖th element is given as the sum
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Figure 2-48: Shown are the generator frequency oscillations for all 29 system gener-
ators. Panel (a) shows 10s of time series data for when the FO is the only source of
system excitation, and panel (b) shows 35s of time series data for when the FO and
random load perturbations are both exciting the system.
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Figure 2-49: Plotted are the current injection magnitudes of (2.218). The perturbative
model (2.168) predicts nodal current balances with a high degree of accuracy. Non-
source current injections are due to extraneous load perturbations.

of the magnitudes of the current injections at the 𝑖th bus:

J𝑖 = |J2𝑖−1|+ |J2𝑖|. (2.218)

We plot the injection magnitudes in Fig. 2-49. As expected, the primary current
injection is located at the source bus, but there is a plethora of small, non-zero
injections as well. These come from the random load perturbations which are applied
at each time step. Fig. 2-49 thus serves to validate (2.167) as a useful model for
analyzing FO propagation.

As stated, the FO source is located in the generator at bus 4. By converting
all loads to constant impedance (with some frequency dependence), we were able to
engender a system whose DWE 𝒴𝑁 had oppositely signed eigenvalues. Via Algorithm
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Figure 2-50: Plotted are the dissipating power injections across all 29 generators. All
injections are positive, indicating the positive dissipation of 𝑃 ⋆. Generators are listed
in ascending order of corresponding bus number. Some magnitudes are too small to
appear on the plot.

2.4.3,

𝜆
{︀
M𝒴𝑁 + (M𝒴𝑁)†

}︀
= −11.9, +39.6. (2.219)

Again, these are the eigenvalues seen by the source bus when it looked into the system.
Because one of the eigenvalues is negative, the source generator is capable of acting as
a dissipating power sink. When the AVR oscillation was initially applied, simulation
results showed that the generator acted like a source. When we simply increased the
damping of the source generator though, we began to excite alternative eigenvalues
of 𝒴𝑁 , and the source generator became a sink. For a sufficiently high level of source
damping, the dissipating power injections of Fig. 2-50 were observed at the generator
buses. In this scenario, the DEF method fails due to the high level of resistance in
the system. This unreliable DEF performance is predicted by the oppositely signed
eigenvalues of (2.219).

It is instructive to note that the eigenvalues of (2.219) do not change as the
damping at the source bus is altered. These eigenvalues are a product of the network,
not the source. This is further confirmation that Algorithm 2.4.3 is agnostic to the
type or cause of the FO; rather, Algorithm 2.4.3 predicts the network response to any
perturbation originating from the selected source bus. Accordingly, frequency and
topological location are the only important characteristics of the FO considered in
the algorithm.
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Chapter 3

Decentralized Small-Signal Stability
Certification Standards for Microgrid
Networks

The celebrated concept of dissipative dynamic systems [192, 193] allows for the formu-
lation of stability certificates for an entire system through the separate consideration
of its individual components: if every component of the system is dissipative, then
the whole system is also dissipative irrespective to the way components are inter-
connected. In this chapter, we leverage this inherent notion of decentralization in
order to propose a series of decentralized small-signal stability standards for micro-
grid networks. In the first section, we provide the mathematical background which
will be necessary for solving the problems considered in this chapter. In the second
section, we consider the case of DC networks, and we build up the necessary theory
to develop such standards. In the third section, we extend the methodology to the
generally more challenging case of AC microgrids.

3.1 Mathematical Background

In this section, the small-signal model of a constant power DC load is recalled. Next,
a small-signal DC microgird network model is stated, and the problem of certifying
the network’s stability is outlined.
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3.1.1 Constant Power DC Load Model

DC-DC power electronic converters are designed with a control system which properly
mitigates input voltage variations in order to provide a fairly constant load voltage.
A common way to represent a lossless converter is using a single-pole, double-throw
(SPDT) switch with a duty cycle 𝐷. Due to the switch, which operates with a
frequency on the order of tens of kilohertz, the inductor current and capacitor voltage
vary throughout a given cycle with small amplitude around their average values even
in steady state. Therefore, to properly account for the low frequency variations, the
so-called small-ripple approximation is used, where the system is averaged over a
given period and switching variations are neglected.

While there are several common types of converters, we will focus on the buck
converter due to its prevalence. The buck converter, consisting of an inductance 𝐿,
capacitance 𝐶 and constant resistance load 𝑅, has a step-down conversion ratio 𝐷.
Since averaging is done over many switching periods, an ideal DC transformer, rather
than a switch, is used in the small-signal model. Further buck converter details are
provided in [58]. To maintain constant voltage at its output, a converter relies on
feedback to modify the duty cycle following any variations in the input voltage. In
this work, we consider a buck converter interfaced with a constant resistance on its
output and a control loop to stabilize the output voltage. In this way, it is seen from
the network as a constant power load in steady state. This model is defined in Fig.
3-1. To characterize the small-signal behavior of the buck converter, we first examine
the transfer function from the control input (duty cycle variation) 𝑑(𝑠) to the output
voltage 𝑣(𝑠) [58]:

𝐺𝑣𝑑(𝑠) =
𝑣(𝑠)

𝑑(𝑠)
= 𝐺𝑑0

𝜔2
0

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔2
0

(3.1)

with 𝐺𝑑0 = 𝑉/𝐷, 𝜔0 = 1/
√
𝐿𝐶 and 𝜁 =

√︀
𝐿/𝐶/(2𝑅). In the presence of voltage

control, the loop gain of the system is defined as 𝑇 = 𝐺𝑣𝑑(𝑠)𝐻(𝑠)𝐺𝑐(𝑠)/𝑉𝑚, where 𝐻

is the sensor gain, 𝐺𝑐(𝑠) is the compensator transfer function and 𝑉𝑚 is the voltage
of the pulse width modulation. The compensator is modeled as a simple lead-lag
controller of the form

𝐺𝑐(𝑠) = 𝐺𝑐∞
(1 + 𝜔𝐿

𝑠
)(1 + 𝑠

𝜔𝑧
)

(1 + 𝑠
𝜔𝑝

)
. (3.2)

The input admittance transfer function 𝑌ℒ,𝑘(𝑠) can be written

𝑌ℒ,𝑘(𝑠) =
𝑖(𝑠)

𝑣𝑔(𝑠)
=

1

𝑍𝑁(𝑠)

𝑇 (𝑠)

1 + 𝑇 (𝑠)
+

1

𝑍𝐷(𝑠)

1

1 + 𝑇 (𝑠)
, (3.3)
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Figure 3-1: Definition of Small-Signal Load Model
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Figure 3-2: Shown are the real parts of the input admittance for a buck converter
(blue), constant resistance load (green), and constant power load (orange).

where, for a buck converter,

• 𝑍𝑁 = −𝑅
𝐷2 is the converter impedance when the load voltage perturbations 𝑣(𝑠)

are eliminated (i.e. 𝑑(𝑠) is infinitely fast and the load acts like constant power),
and

• 𝑍𝐷 = 𝑅
𝐷2

1+𝑠𝐿/𝑅+𝑠2𝐿𝐶
1+𝑠𝑅𝐶

is the converter impedance in the absence of control input
𝑑(𝑠) (i.e. the load acts like constant impedance).

In steady state, 𝑍𝐷 = −𝑍𝑁 . This is shown quite clearly by the green and orange
traces in Fig 3-2, where above Ω𝑐, Re{𝑌ℒ(𝜔)} > 0, and the load behaves more like
a passive impedance. In practice, converters are also equipped with an input filter
to reject the high-frequency current components from converter switching actions.
Improper input filter design can bring instability to an otherwise stable converter.

3.1.2 Network Modeling for Small-Signal Stability Analysis

To study the small-signal stability of the full DC microgrid, we leverage a network
whose connected graph 𝐺(𝒱 , ℰ) has edge set ℰ with cardinality |ℰ| = 𝑚, vertex set 𝒱
with cardinality |𝒱| = 𝑛, and signed nodal incidence matrix 𝐸 ∈ R𝑚×𝑛. This network
has a set of operating equilibrium voltages V0 ∈ R𝑛 and nodal current injections I0 ∈
R𝑛. The vectors of voltage and current perturbations are written as v(𝑡) = V(𝑡)−V0
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Figure 3-3: Simple 2 bus DC microgrid network. The source, load, and line dynamics
are represented by 𝑌𝑠(𝑠), 𝑌𝑙(𝑠), and 𝑌𝑡(𝑠), respectively.

and i(𝑡) = I(𝑡)−I0, respectively. Finally, the Laplace domain representations of these
signal vectors are written as 𝑣(𝑠) = ℒ{v(𝑡)} and 𝑖(𝑠) = ℒ{i(𝑡)}.

Next, we define the frequency dependant nodal admittance matrix according to
the general rule

𝑖(𝑠) = Y(𝑠)𝑣(𝑠). (3.4)

Matrix Y(𝑠) includes contributions from the network matrix Y𝑁(𝑠) and the diagonal
shunt1 matrix Y𝑆. Written explicitly,

Y(𝑠) =
∑︁

{𝑖,𝑗}∈ℰ

Y
(𝑖,𝑗)
𝑁 (𝑠) +

∑︁
𝑖∈𝒱

Y
(𝑖)
𝑆 (𝑠), (3.5)

where Y
(𝑖,𝑗)
𝑁 is the matrix associated with the network connection between buses 𝑖

and 𝑗, and Y
(𝑖)
𝑆 is the matrix associated with shunt elements at bus 𝑖. For example,

the simple network illustrated in Fig. 3-3 can be decomposed and written as

Y = Y
(1,2)
𝑁 + Y

(1)
𝑆 + Y

(2)
𝑆 (3.6a)

=

⏞  ⏟  [︃
𝑌𝑡 −𝑌𝑡

−𝑌𝑡 𝑌𝑡

]︃
+

⏞  ⏟  [︃
𝑌𝑠 0

0 0

]︃
+

⏞  ⏟  [︃
0 0

0 𝑌𝑙

]︃
. (3.6b)

If Y𝐿(𝑠) is the diagonal matrix of line admittances, then (3.5) can also be con-
ventionally expressed via Y(𝑠) = 𝐸𝑇Y𝐿(𝑠)𝐸 + Y𝑆(𝑠). In the absence of external
perturbations,

0 = Y(𝑠)𝑣(𝑠) (3.7)

will always be satisfied, since the network obeys Kirchhoff’s laws. In general, (3.7)
may only be satisfied by nontrivial solutions of 𝑣(𝑠) when 𝑠 = 𝑠0 is chosen such that
Y(𝑠0) is a singular matrix.

1Shunt elements are any elements which tie the network to ground, and they can include loads,
sources, and network elements.
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Definition 10. 𝑣𝑒𝑠0𝑡, 𝑣 ̸= 0, is an eigenmode of Y(𝑠) if

0 = Y(𝑠0)𝑣𝑒
𝑠0𝑡. (3.8)

In the following, both 𝑠0 and 𝑣𝑒𝑠0𝑡 will be referred to as the same eigenmode.
As a necessary consequence of (3.8), det[Y(𝑠0)] = 0 if 𝑠0 is an eigenmode. We now
collect all values of 𝑠0 which satisfy Definition 10 and place them in the vector 𝑠0.
The small-signal stability of system (3.4) can be gauged by computing the real parts
of 𝑠0.

Lemma 5. System (3.7) is stable if

R{𝑠0} < 0, ∀𝑠0 ∈ 𝑠0. (3.9)

Proof. In the absence of external perturbations, the solution to (3.7) will be a scaled
sum of its eigenmodes. The decay rate of each eigenmode is given by Re{𝑠0}. If (3.9)
holds, then the solution will decay exponentially fast.

3.1.3 Modeling Droop-Controlled Inverter-Based Components

in AC Microgrids

In this section, we derive explicit expressions for the small-signal admittance matrices
associated with both RL lines2 and droop-controlled inverter-based generation sources
in AC microgrids. A suitable modeling paradigm uses dynamic phasors 𝑉𝑑𝑞(𝑡) and
𝐼𝑑𝑞(𝑡). These dynamics phasors are split into their real and imaginary parts in an
arbitrary 𝑑𝑞 reference frame, and then their equilibrium points are discarded in order
to capture their respective small signal perturbations 𝑣𝑑(𝑡), 𝑣𝑞(𝑡), 𝑖𝑑(𝑡), and 𝑖𝑞(𝑡).
Please refer to Appendix C for additional details on dynamic phasor modeling.

RL Line Admittance

In the modeling paradigm of dyanmic phasors, the admittance associated with an RL
line, connecting nodes 𝑗 and 𝑘, is given in (C.14) by [91]

𝒴𝑗𝑘(𝑠) =

[︃
𝐿𝑠 + 𝑅 −𝐿𝜔0

𝐿𝜔0 𝐿𝑠 + 𝑅

]︃−1

. (3.10)

2The corresponding admittance can also be used to characterize RL loads.
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Figure 3-4: Inverter connected to a grid node: 𝑣𝑑 and 𝑣𝑞 are small-signal variations
of grid node voltage while 𝑒𝑑 and 𝑒𝑞 are variations of inverter terminal voltage. The
combined coupling and virtual inductance and resistance are 𝐿𝑐 and 𝑅𝑐 respectively.

Inverter Input Admittance

We assume the inverter terminals are connected to a network bus via a certain
impedance which, in general, is the combined virtual, coupling, and possibly con-
necting line impedance. We will refer to this combined impedance simply as coupling
impedance and denote it as 𝑍𝑐 = 𝑅𝑐 + 𝑠𝐿𝑐. Let E𝑡, Θ𝑡, and Ω𝑡 denote the (non-small
signal) magnitude, angle, and frequency of the inverter’s terminal voltage. The fol-
lowing equations describe the time-domain dynamics of a droop-controlled inverter
[184] (we omit the subscript 𝑖 denoting the inverter number):

𝑑Θ𝑡

𝑑𝑡
= Ω𝑡 − Ω0 (3.11a)

𝜏
𝑑Ω𝑡

𝑑𝑡
= Ω⋆ − Ω𝑡 − 𝑘𝑝𝑃 (3.11b)

𝜏
𝑑E𝑡

𝑑𝑡
= E⋆

𝑡 − E𝑡 − 𝑘𝑞𝑄, (3.11c)

where 𝑃 and 𝑄 are instantaneous values of real and reactive power discharged by the
inverter, and 𝑘𝑝 and 𝑘𝑞 are frequency and voltage droop gain coefficients respectively.
Constants Ω⋆ and E⋆ are the frequency and magnitude set-points respectively, and 𝜏 is
the inverse of the power controller filter cut-off frequency 𝑤𝑐𝑖 (typically around 31.41

rad/s for 50 Hz grids). Control scheme (3.11) allows inverters to mimic synchronous
machine dynamics; a detailed description of such control is provided in [146].

As previously, we let the lower-case letters denote small-signal variations of cor-
responding variable. Thus 𝜃, 𝜔, 𝑒, 𝑝, and 𝑞 are the variations of inverter terminal
angle, frequency, voltage magnitude, real and reactive power output, respectively. In
writing the small-signal representation of (3.11), we take into account that inverters
typically operate at very low values of terminal angle and voltage variation due to
small per unit values of coupling impedance (for details, see [184]). In this case, we
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have the following simple relations (where we assume nominal voltage is 1 pu):

𝑒𝑞 = 𝜃, 𝑒𝑑 = 𝑒, (3.12a)

𝑝 = 𝑖𝑑, 𝑞 = −𝑖𝑞 (3.12b)

Where 𝑒𝑑, 𝑒𝑞, 𝑖𝑞, and 𝑖𝑞 are the small-signal 𝑑𝑞 components of the inverter terminal
voltage and current (Fig. 3-4). The small-signal approximation of (3.11) becomes:

𝜏
𝑑2𝑒𝑞
𝑑𝑡2

+
𝑑𝑒𝑞
𝑑𝑡

= 𝑘𝑝𝑖𝑑 (3.13a)

𝜏
𝑑𝑒𝑑
𝑑𝑡

+ 𝑒𝑑 = −𝑘𝑞𝑖𝑞. (3.13b)

We can now construct the effective admittance matrix associated with the inverter
controls that links inverter voltage and current via [𝑖𝑑, 𝑖𝑞]

𝑇 = 𝒴ctrl[𝑒𝑑, 𝑒𝑞]
𝑇 , where

𝒴ctrl(𝑠) =

[︃
0 − 𝑘𝑞

𝜏𝑠+1
𝑘𝑝

𝜏𝑠2+𝑠
0

]︃−1

. (3.14)

In order to get the full inverter input admittance, we note that the coupling impedance
is connected in series with the inverter and has the admittance given by (3.10). There-
fore, the input admittance associated with inverter 𝑖 is given by

𝒴𝑖(𝑠) =

[︃
𝑅𝑐 + 𝑠𝐿𝑐 −𝑋𝑐 − 𝑘𝑞

1+𝜏𝑠

𝑋𝑐 + 𝑘𝑝
𝜏𝑠2+𝑠

𝑅𝑐 + 𝑠𝐿𝑐

]︃−1

, (3.15)

where 𝑅𝑐, 𝐿𝑐, and 𝑋𝑐 = 𝐿𝑐𝜔0 refer to coupling impedance parameters.

AC Network Model

Finally, in the absence of external perturbations, we note that AC microgrid systems
also satisfy (3.7). In order to differentiate between the nodal admittance matrices of
AC and DC microgrid networks, Y(𝑠) is used to refer to the DC microgird matrix,
while Y

˜
(𝑠) is used to refer to the AC microgird matrix. The entries of the AC system

matrix will be 2 × 2 admittance matrix terms, such as (3.10) and (3.15), and the
voltage vector 𝑣(𝑠) will be filled with 𝑑𝑞 axis small-signal voltage perturbations:

𝑣(𝑠) = [𝑣𝑑,1(𝑠), 𝑣𝑞,1(𝑠), . . . 𝑣𝑑,𝑛(𝑠), 𝑣𝑞,𝑛(𝑠)]𝑇 . (3.16)
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3.2 Stability Certificates for DC Microgrids

3.2.1 From Centralized to Decentralized Stability Certificates

In this subsection, the proposed small-signal network model of (3.7) is “parameter-
ized” by scaling its closed loop controller gains. Leveraging this parameterization, a
decentralized stability certificate is derived. This certificate is then updated to accom-
modate networks where negative admittances are present at zero frequency. Finally,
a simple, tractable example is given in order to illustrate the mechanics behind the
proposed methods.

Centralized Stability Assessment via Parameterization

We choose to “parameterize” our network model with a homotopic scalar gain value
𝛼 ∈ [0, 1], where 𝛼 = 1 corresponds to a nominal (or desired) system configuration.
Next, we appropriately multiply 𝛼 by all closed loop controller gains in the network
which influence stability. For example, if the open loop admittance of a dynamical
load is given by ℎ(𝑠), and proportional feedback control is added, its closed loop
admittance may be computed as

𝑌 (𝑠) =
ℎ(𝑠)

1 + 𝐾 · ℎ(𝑠)
. (3.17)

When this closed loop admittance is parameterized, the transfer function may be
written as

𝑌 (𝑠, 𝛼) =
ℎ(𝑠)

1 + (𝛼 ·𝐾) · ℎ(𝑠)
. (3.18)

Clearly, when 𝛼 = 0, the closed feedback loop is broken. The primary feature of this
parameterization scheme is that for 𝛼 = 0, the system is “definitely” stable, i.e. all of
its eigenmodes are in the LHP. This claim can be certified by considering that, when
𝛼 = 0, all relevant controller gains (voltage regulation, power sharing, etc.) in the
network are set to 0. When this occurs, all of the closed loop feedback mechanisms in
the network are effectively broken. The system will thus be operating in a definitely
stable, open loop configuration. When 𝛼 is scaled up to 1, then all of the controller
gains have also been scaled up to their nominal values. As will be clarified, the scaling
of 𝛼 from 0 to 1 can be thought of as a homotopy procedure, since it represents a
smoothly varying parameterization of the system eigenmodes.
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Using this parameterization scheme, matrix Y(𝑠, 𝛼) represents the previously de-
rived small-signal network model which has been parameterized with 𝛼. The general
strategy for proving the stability of the system Y(𝑠, 𝛼) is based on the well-known
“zero exclusion principle” and is closely related to the 𝜇-analysis, as is shown in the
following stability lemma.

Lemma 6. Assuming Y(𝑠, 𝛼) is stable for 𝛼 = 0, then Y(𝑠, 𝛼) is also stable for
𝛼 = 1 if the determinant satisfies

det[Y(𝑠 = j𝜔, 𝛼)] ̸= 0, ∀𝜔 ≥ 0, ∀𝛼 ∈ [0, 1]. (3.19)

Proof. For 𝛼 = 0, the real part of all eigenmodes will lie in the LHP. For the system
to go unstable, an eigenmode must cross the imaginary axis. At the point of crossing,
∃𝛼, 𝜔 ∋ det[Y(𝑠 = j𝜔, 𝛼)] = 0, since one of the eigenmodes will necessarily have
Re{𝑠0} = 0. If this does not occur, the system remains stable.

To generalize this lemma, we introduce the rotational function

𝒟(𝜔, 𝛼) = ej𝜑(𝜔,𝛼) (3.20)

whose magnitude is unity and whose phase function 𝜑(𝜔, 𝛼) depends on both fre-
quency and the parameterization value 𝛼.

Remark 3. The results of lemma 6 remain valid if Y(𝑠, 𝛼) is multiplied by any
nonzero function. Thus, we can write the generalization of condition (3.19) as

det[𝒟(𝜔, 𝛼)Y(𝑠 = j𝜔, 𝛼)] ̸= 0, ∀𝜔 ≥ 0, ∀𝛼 ∈ [0, 1]. (3.21)

While (3.21) can guarantee the stability of the system Y(𝑠, 𝛼), it is centralized
in nature, i.e., there is no way to relate the determinants of the subsystems with the
determinant of the full system. Rather than require a nonzero determinant, a more
restrictive condition is to require the positive definiteness of the matrix over the same
range. While conservative, positive definiteness has a very useful additive property,
i.e., if the matrices in a set are all positive definite, then so is their sum.

Lemma 7. Assume network Y ≡ Y(𝑠, 𝛼) is stable for 𝛼 = 0. Set 𝑠 = j𝜔. If there
exists 𝒟 ≡ ej𝜑(𝜔,𝛼) for which

𝒟Y + (𝒟Y)† ≻ 0, ∀𝜔 ≥ 0, ∀𝛼 ∈ [0, 1], (3.22)

then Y(𝑠, 𝛼) is stable for all gain values up to 𝛼 = 1.
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Proof. Assume matrix Y becomes singular for some allowed values of 𝜔, 𝛼. Then
𝒟Y will also be singular, meaning 𝒟Y + (𝒟Y)† cannot be positive definite. If (3.22)
is satisfied, Y cannot become singular, and Lemma 6 holds.

Decentralized Stability Rules

As written, (3.22) is still a fully centralized stability certificate, because Y is the full
system matrix. The certificate can be converted to a decentralized stability certificate,
though, by writing Y as a summation of its network and shunt components, as in
(3.5). To simplify notation, we introduce set 𝒞 = ℰ ∪ 𝒱 ; it is defined to be the
set of indices associated with all dynamical elements in the network. Furthermore,
𝑌𝑘 ≡ 𝑌𝑘(𝑠, 𝛼), 𝑘 ∈ 𝒞 refers to the 𝑘th complex scalar transfer function element in the
system (line, load, or source).

Theorem 4. Assume network Y ≡ Y(𝑠, 𝛼) of (3.7) is stable for 𝛼 = 0. Set 𝑠 = j𝜔.
If there exists 𝒟 ≡ 𝑒j𝜑(𝜔,𝛼) for which

Re{𝒟𝑌𝑘} > 0, ∀𝑘 ∈ 𝒞, ∀𝜔 ≥ 0, ∀𝛼 ∈ [0, 1], (3.23)

then Y(𝑠, 𝛼) is stable for all gain values up to 𝛼 = 1.

Proof. Using (3.5), we break system 𝐷Y into

𝒟Y =
∑︀

𝑖,𝑗∈ℰ 𝒟Y
(𝑖,𝑗)
𝑁⏟  ⏞  

𝐴

+
∑︀

𝑖∈𝒱 𝒟Y
(𝑖)
𝑆⏟  ⏞  

𝐵

. (3.24)

Assume (3.23) holds true. By construction, matrix 𝐴𝐻 = 𝐴 + 𝐴† necessarily has
a single 𝜆 = 0 eigenvalue, and all others are positive. The eigenvector associated
with this zero eigenvalue is equal to e = [1, 1, . . . 1]𝑇 . Matrix 𝐵𝐻 = 𝐵 + 𝐵† is also
a PSD matrix, but it is additionally diagonal, so e†𝐵𝐻e > 0. Thus, (3.23) implies
positive definiteness of 𝒟Y + (𝒟Y)†, which further implies the stability of Y(𝑠, 𝛼)
up to 𝛼 = 1.

As a helpful simplification, we may use polar coordinates to write 𝜃𝑘 ≡ ∠𝑌𝑘(𝜔, 𝛼)

and |𝑌𝑘| ≡ |𝑌𝑘(𝜔, 𝛼)|. Thus, the positivity condition in (3.23) can be stated as

0 < 𝒟𝑌𝑘 + (𝒟𝑌𝑘)† (3.25a)

= 2|𝑌𝑘|Re{𝑒j(𝜑(𝜔,𝛼)+𝜃𝑘)}. (3.25b)

Using (3.25), we have the following corollary.
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Corollary 7. If there exists 𝜑 ≡ 𝜑(𝜔, 𝛼) for which

−𝜋

2
<𝜑 + 𝜃𝑘<

𝜋

2
,∀𝑘∈𝒞, ∀𝜔 ≥ 0, ∀𝛼∈ [0, 1], (3.26)

and Y(𝑠, 𝛼 = 0) is stable, then Y(𝑠, 𝛼=1) is also stable.

The Problem of Negative Admittance at Zero Frequency

Assuming the network model is constructed using physical laws and physically real-
izable controllers, the admittance matrix Y(𝑠 = j0, 𝛼) will be a purely real matrix.
Therefore, the angle 𝜃𝑘 associated with all elements in this matrix will have an angle of
either 𝜃𝑘 = 0∘ or 𝜃𝑘 = 180∘. If any shunt element, such as a constant power load, has
𝜃𝑘 = 180∘ at 𝑠 = j0, then condition (3.26) cannot be satisfied at this frequency, since
any network line will necessarily have 𝜃𝑘 = 0∘. Mathematically, this limiting case of
𝑠 = j0 cannot be ignored, since a negative real eigenmode (i.e. system pole) may
potentially travel on the real axis and cross the imaginary axis at 𝑠 = j0. Therefore,
network singularity at zero frequency must be considered.

Definition 11. System Y(𝑠, 𝛼) is said to be zero-frequency stable if det[Y(𝑠 =
j0, 𝛼)] ̸= 0, ∀𝛼 ∈ [0, 1]. That is, no real eigenmode crosses into the RHP as 𝛼 is
scaled from 0 to 1.

We note, however, that det[Y(𝑠 = j0, 𝛼)] = 0 will occur at the point of maximum
network loadability. Therefore, if this determinant is close to 0, then the system is
operating on the tip of the so-called “nose curve”. Practical systems are engineered to
operate far from this nose curve. We therefore offer the following assumption, which
entirely precludes the possibility of a system encountering zero-frequency instability.

Assumption 1. System (3.7) is assumed to operate far from the steady state nose
curve and is therefore zero-frequency stable.

With the addition of Assumption 1, we update Corollary 7.

Corollary 8. If there exists 𝜑 ≡ 𝜑(𝜔, 𝛼) for which

−𝜋

2
<𝜑 + 𝜃𝑘<

𝜋

2
,∀𝑘∈𝒞, ∀𝜔 > 0, ∀𝛼∈ [0, 1], (3.27)

and Assumption 1 holds, and Y(𝑠, 𝛼 = 0) is stable, then Y(𝑠, 𝛼) is also stable
∀𝛼 ∈ [0, 1].
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Per (3.27), the phase condition must be satisfied for all positive 𝜔, rather than all
non-negative 𝜔, as in (3.26).

Numerical Example

As an illustrative example, we consider the network in Fig. 3-3. We define the
open-loop load dynamics via

ℎ(𝑠) =
1

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛

. (3.28)

A PI controller is then added in a negative feedback loop to yield the resulting ad-
mittance function

𝑌𝑙(𝑠) =
ℎ(𝑠)

𝐾(1 + 1
𝑠𝜏𝑖

)ℎ(𝑠) + 1
. (3.29)

The source is considered to be an ideal voltage source3 connected through a short
line. Thus, the admittances associated with the source and the network line are
respectively given by

𝑌𝑠(𝑠) =
1/𝑅𝑠

1 + 𝑠𝜏
, 𝑌𝑡(𝑠) =

1/𝑅𝑙

1 + 𝑠𝜏
, (3.30)

where, for simplicity, the time constant 𝜏 is assumed equal in both admittances. We
consider the stability of this system in two ways: first, using the non-conservative cen-
tralized approach of Lemma 6, and second, using the decentralized approach proposed
by Corollary 8.

Centralized Stability Approach: In the centralized approach of Lemma 6, we
may leverage the full, centralized network model. Rather than scaling 𝛼, we directly
scale gain value 𝐾 to determine its maximal tolerable value. The determinant of
system admittance matrix (3.6) is

det[Y] = (𝑌𝑠 + 𝑌𝑡) (𝑌𝑙 + 𝑌𝑡)− 𝑌 2
𝑡 . (3.31)

Satisfying (𝑌𝑠 + 𝑌𝑡) (𝑌𝑙 + 𝑌𝑡)− 𝑌 2
𝑡 = 0 simplifies to

𝑠3 + (𝜏𝑅 + 2𝜁𝜔𝑛) 𝑠2 +
(︀
𝜔2
𝑛 + 𝐾 + 𝑅

)︀
𝑠 + 𝐾/𝜏𝑖 = 0, (3.32)

3Ideal voltage sources act as direct paths to ground in an admittance model.
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where 𝑅 ≡ 𝑅𝑠 + 𝑅𝑙. By Routh-Hurwitz, an eigenmode will become unstable when
𝐾 > 𝜏𝑖(𝜏𝑅 + 2𝜁𝜔𝑛)(𝜔2

𝑛 + 𝐾 + 𝑅). This simplifies to

𝐾 >
𝜏𝑖 (𝜏𝑅 + 2𝜁𝜔𝑛) (𝜔2

𝑛 + 𝑅)

1− 𝜏𝑖 (𝜏𝑅 + 2𝜁𝜔𝑛)
≡ 𝐾̂ (3.33)

assuming 1 > 𝜏𝑖 (𝜏𝑅 + 2𝜁𝜔𝑛). When (3.33) is satisfied as an equality, the complex
roots of (3.32) are

𝑠 = 0± j
√︀

(𝜔2
𝑛 + 𝑅)/(𝑅𝜏𝜏𝑖 + 2𝜏𝑖𝜁𝜔𝑛 − 1) ≡ j𝜔̂. (3.34)

Since det[Y(𝑠 = j𝜔̂)] = 0 for 𝐾 = 𝐾̂, this is the gain value for which stability is lost,
and 𝜔̂ is the frequency of the system mode that becomes unstable. When applying
the numerical values 𝜔𝑛 = 2𝜋, 𝜁 = 0.1, 𝜏 = 0.1, and 𝜏𝑖 = 0.25, we find 𝐾̂ = 20.77 is
the maximum tolerable gain value.

Decentralized Stability Approach: In the decentralized approach, we consider
positive definiteness of the network elements independently via condition (3.27). To
apply this corollary, we parameterize the load by setting 𝐾 → 𝛼·𝐾̂, so that for 𝛼 = 1,
the system will definitely become marginally stable. Next, we independently define
the phase functions 𝜃𝑡(𝜔, 𝛼) and 𝜃𝑙(𝜔, 𝛼) associated with parameterized admittance
functions 𝑌𝑡(𝜔, 𝛼)4 and 𝑌𝑙(𝜔, 𝛼):

𝜃𝑡(𝜔, 𝛼) = tan−1 (−𝜔𝜏) (3.35)

𝜃𝑙(𝜔, 𝛼) = tan−1

(︂
𝛼 · 𝐾̂/𝜏𝑖 − 2𝜁𝜔𝑛𝜔

2

𝜔(𝜔2
𝑛 + 𝛼 · 𝐾̂)− 𝜔3

)︂
. (3.36)

Next, we plug these phase functions into inequality (3.26). We then plot the range
of values which the unknown function 𝜑(𝜔, 𝛼) can permissibly take, for each element,
as continuous functions of frequency and as discrete functions of 𝛼. The results are
shown in Fig. 3-5. In panel (f), it can clearly be seen that the inequality “breaks” at
𝜔 ≈ 7.59. This corresponds to 𝛼 = 0.871 with a corresponding maximum controller
gain of 𝐾 ≈ 18.1. When the sectors lose continuous overlap, the inequality is neces-
sarily violated, and stability of the interconnection can no longer be guaranteed (even
though the system damping ratio is still 0.8%). While 𝐾 ≈ 18.1 is 12.9% conserva-
tive, this gain value guarantees stability not only for the circuit in Fig. 3-3, but also

4Since they have identical time constants, the line and the source phase functions are identical.
Thus, only one of them is defined.
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Figure 3-5: The shaded regions are the values that function 𝜑(𝜔, 𝛼) can take, ac-
cording to inequality (3.27), for a continuum of frequency and controller gain values.
The grey sector corresponds to the line phase function (3.35), while the red sector
corresponds to the load phase function (3.36). Loss of overlap between these shaded
regions indicates the non-existence of function 𝜑(𝜔, 𝛼).

for an arbitrary interconnection of an arbitrary number of components in that circuit
(assuming the system is still zero-frequency stable). Thus, it provides a generalized
stability guarantee, rather than just a specific one.

3.2.2 Numerical Test Results

In this section, we consider a microgrid system consisting of three primary compo-
nents: stiff battery-based voltage sources, RL lines, and constant resistance loads
connected to buck converters. In the first subsection, we initialize the 8-bus micro-
grid system of Fig. 3-6. Next, we appropriately parameterize the buck converters.
Finally, we analyze the small-signal stability of the network under two different con-
troller configurations.

System Initialization

We first consider the equilibrium point of the network, since this operating point will
influence the input voltage V for the loads. This initialization procedure is reviewed
in Appendix B.2. To introduce variety into this network, the line lengths are chosen
from a normal distribution with a small standard deviation: 𝑙𝑖𝑗 = 1 + 𝒩 (0, 0.12).
Solving (B.57) using the parameter values provided in Table 3.1, we get a solution
with non-source nodal voltages ranging from 28.8V to 29.3V, as given in Table 3.2.
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Buck Converter Parameterization

In the microgrid system of Fig. 3-6, the loads are modeled as constant resistance
and are interfaced with the network through buck converters. The nominal converter
and controller parameters have been drawn from [58] and are defined in Table 3.1.
The buck converter’s transfer function, with the additional grounded filter capacitor
from Fig. 3-1, can be parameterized by scaling the compensator gain 𝐺𝑐∞ from (3.2).
Thus,

𝐺𝑐(𝑠, 𝛼) ≡ 𝛼 ·𝐺𝑐(𝑠) (3.37)

and the full transfer function can be written as

𝑌ℒ𝑐(𝑠, 𝛼) ,
𝑉𝑚𝐷

2

𝑉𝑚 + 𝐺𝑐(𝑠, 𝛼)𝐺𝑣𝑑(𝑠)𝐻
·(︂

1 + 𝑠𝑅𝐶

𝑅 + 𝑠𝐿 + 𝑠2𝑅𝐿𝐶
−𝐺𝑐(𝑠, 𝛼)

𝐺𝑣𝑑(𝑠)𝐻

𝑅𝑉𝑚

)︂
+ 𝐶𝑓𝑠, (3.38)

where 𝐶𝑓 represents the parallel filter capacitor. At non-zero frequencies, when 𝛼→ 0,
(3.38) relaxes to

𝑌ℒ,𝑐(𝑠, 𝛼→ 0) = 𝐷2

(︂
1 + 𝑠𝑅𝐶

𝑅 + 𝑠𝐿 + 𝑠2𝑅𝐿𝐶

)︂
+ 𝐶𝑓𝑠, (3.39)

which is effectively a passive RLC transfer function. Thus, the associated parame-
terized system will be definitely stable when 𝛼 = 0. When 𝑠 → j0, the admittance
relaxes to

𝑌ℒ,𝑐(𝑠→ j0, 𝛼) =−𝐷2/𝑅, (3.40)

as would be expected from a constant power load. Since the zero frequency response
of the load is negative, the conditions from Corollary 8 must be satisfied in order to
certify the stability of the network in Fig. 3-6. In this system, the generators are as-
sumed to be stiff, battery-based voltage sources. Accordingly, their only dynamics are
captured by the interconnecting line. The phase response of the RL lines (including
the source lines) is given according to

𝜃𝑍(𝜔, 𝛼) = tan−1(−𝜏𝜔), (3.41)
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Parameter Description Value

C
on

ve
rt

er 𝑉 Input Voltage 28 ∼ 30 V
𝑅 Load Resistance 3 Ω
𝐶 Capacitance 500 𝜇F
𝐿 Inductance 50 𝜇H
𝐷 Duty Cycle 0.536

C
on

tr
ol

le
r

𝐺𝑐∞ Midband Gain 3.7
𝑤𝐿 Lead Zero 2𝜋 · 500 Hz
𝑤𝑧 Trailing Zero 2𝜋 · 1700 Hz
𝑤𝑝 Pole 2𝜋 · 14.5 kHz
𝐻 Sensor Gain 1/3
𝑉𝑚 Voltage of PWM 4

N
et

w
or

k 𝐶𝑓 Filter Capacitor 500 𝜇F
𝑙𝑖𝑗 Line Length 1.0 km
𝑟 Line Resistance 0.2 Ω/km
𝜏 Line Time Constant 1 ms
𝑉𝑠 Source Voltage 30 V

Table 3.1: Converter, Controller, and Network Parameters

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 Bus 8
29.09 28.78 28.77 29.02 29.83 29.06 29.04 29.84

Table 3.2: Equilibrium DC Voltages of the Circuit in Fig. 3-6

where 𝜏 = 𝐿/𝑅. The phase response of (3.38) is analytically cumbersome, but it can
be numerically computed as

𝜃ℒ(𝜔, 𝛼) = tan−1

(︂
Im {𝑌ℒ(𝑠 = j𝜔, 𝛼)}
Re {𝑌ℒ(𝑠 = j𝜔, 𝛼)}

)︂
. (3.42)

Testing Network Stability

We now gauge the stability of the network under two buck converter controller config-
urations: a lead-lag filter, as in (3.3), and a common PI filter. In both cases, stability
assessments are performed using an exact, centralized approach (i.e. root locus), and
via the decentralized approach of Corollary 8.

~ ~

Figure 3-6: Meshed 8-bus microgrid with two stiff voltage sources and six loads.
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Lead-Lag Controller: In this example, 𝐺𝑐(𝑠) is the lead-lag controller specified
in (3.3). According to [58], the stability of (3.3) is primarily controlled by the roots
of 1 + 𝑇 (𝑠). With the parameters from Table 3.1, the lead-lag filter gives the bode
plot of 1 + 𝑇 (𝑠) a phase margin of 𝜑𝑚 = 45.6∘ and a gain margin of 𝑔𝑚 =∞. Using
this controller, we first apply the decentralized approach of Corollary 8 by analyzing
the phase functions (3.41) and (3.42). These results are shown in Fig. 3-7, where the
phase functions are plotted from 𝛼 = 0 up to 𝛼 = 10 (i.e. scaling the gain 𝐺𝑐∞ to 10
times its nominal value). As can be seen, there exists continuous overlap between the
sectors; this is true for all loads in the system (results not shown), despite the small
differences in equilibrium input voltages for the loads. Since the network is “definitely
stable” for 𝛼 = 0, Corollary 8 is satisfied, and the system is guaranteed stable under
arbitrary interconnection, assuming input voltages remain sufficiently close to those
tested (i.e. within a few volts).

Next, we confirm these results using Lemma 5 and testing the system eigenmodes
on a root locus plot as 𝛼 is scaled. To do so, we build the parameterized system admit-
tance matrix Y(𝑠, 𝛼) ∈ C8×8 and construct the 𝑁 th order polynomial det[Y(𝑠, 𝛼)] = 0,
where 𝑁 = 40. Finally, we employ the MATLAB root solver roots(·) to build the
complex vector

s(𝛼) = {𝑠 | det[Y(𝑠, 𝛼)] = 0}. (3.43)

As shown in Fig. 3-8, no eigenmodes cross into the RHP for any value of 𝛼 ≤ 10.
Therefore, the conclusion of Corollary 8 is correct: the network is stable for any gain
value 𝐺𝑐∞, even up to 10 times its nominal value. Of course, we have confirmed the
prediction only for a single network configuration, but the results should generalize
to an arbitrary network configuration. To further confirm this result, we set 𝛼 = 10

and applied a 0.5 Volt step increase to the voltage source set point at bus 5. The
resulting stable dynamic responses are shown in Fig. 3-9. The modeling procedure
used to simulate these dynamics is reviewed in Appendix B.2.

PI Controller: In this test, we used a PI controller:

𝐺𝑐(𝑠) = 𝐺𝑖

(︀
1 + 𝜔𝑖

𝑠

)︀
. (3.44)

Setting 𝜔𝑖 = 2𝜋500 and 𝐺𝑖 = 0.015, the phase and gain margins of 1 + 𝑇 (𝑠) were
driven to 𝜑𝑚 = 93.6∘ and 𝑔𝑚 = 12.3 dB. The resulting phase function analysis results
are shown in Fig. 3-10, where the phase functions are plotted from 𝛼 = 0 up to
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Figure 3-7: Plotted are the values that 𝜑(𝜔, 𝛼) can take, according to (3.27), for a
continuum of frequency and gain values. The grey sector corresponds to the line
phase function (3.41), while the red sector corresponds to the load phase function
(3.42), where 𝐺𝑐(𝑠) is a lead-lag controller.
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Figure 3-8: Eigenmode locus of the Fig. 3-6 microgrid via (3.43). All buck converters
are outfitted with lead-lag controllers. Stability is never lost for 𝛼 ≤ 10.
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Figure 3-9: Shown are the nodal voltage (panel (a)) and line current (panel (b))
dynamic responses for a 0.5V step change in supply voltage at source bus 5. Despite
the large controller gain values associated with 𝛼 = 10, system settling time is on the
order of 10ms.
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Figure 3-10: Plotted are the values that 𝜑(𝜔, 𝛼) can take, according to (3.27), for
a continuum of frequency and gain values. The grey sector corresponds to the line
phase function (3.41), while the red sector corresponds to the load phase function
(3.42), where 𝐺𝑐(𝑠) is a PI controller.
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Figure 3-11: Eigenmode locus of the Fig. 3-6 microgrid via (3.43). All buck converters
are outfitted with PI controllers. System stability is lost when 𝛼>4.5.

𝛼 = 7 (i.e. scaling the gain 𝐺𝑐∞ to 7 times its nominal value). As can be seen, there
is a break in continuous overlap between the sectors at 𝛼 = 3.8, corresponding to a
maximum allowable controller gain of 3.8× 0.015 = 0.057. The root locus plot
is shown in Fig. 3-11. The network is clearly still stable for 𝛼 = 3.8, but becomes
marginally stable for 𝛼 = 4.5. Stability is clearly lost for larger value of 𝛼, as shown
by the eigenmodes of 𝛼 = 7, for example. Therefore, Corollary 8 is conservative by a
margin of 100× (1− 3.8/4.7) ≈ 20% for this particular network configuration. In this
context, the results of Fig. 3-10 can be interpreted alternatively: there exists some
network configuration for which 𝛼 = 3.8 is the maximum allowable gain factor.
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3.2.3 Practical Applications to the Design and Operation of

DC Microgrids

Although mathematical in nature, the results of Corollary 8 can lead to a plethora
of (i) practical design guidelines for engineers and (ii) useful operational tools for
non-expert microgrid users. Both are briefly considered.

Microgrid Design Tools

If an engineering team desires plug and play operability of a microgrid, they can follow
the steps of Algorithm 4. This procedure can have three outcomes: it will either
(i) confirm the plug-and-play operability of all desired elements, (ii) determine the
maximum vale of 𝛼 for which the system can operate, or (iii) identify the components
which must be removed in order for the system to operate at 𝛼 = 1 (i.e. nominal
controller values).

Since the amount of overlap between phase curves implicitly parameterizes a sta-
bility margin, this procedure can also directly inform design constraints. For example,
Fig. 3-7 was used to guarantee plug-and-play stability for constant power loads con-
nected to RL lines. These results only hold, though, for the tested parameter values.
If, for example, the time constant associated with the lines increased from 𝜏 = 1 ms
to 𝜏 = 7 ms, all of the gray curves would shift backwards in frequency and overlap
would be lost. Accordingly, an example of a practical design constraint follows:

• For plug-and-play operability to be achieved in a network with buck converter
loads, lines must be chosen such that their electromagnetic time constants satisfy
𝜏 < 7 ms.

Microgrid Operational Tools

We consider a situation in which a variety of common microgrid components are col-
lectively analyzed by Algorithm 4. Immediate analysis could be performed by design
engineers or researchers, while future analysis could be performed directly by manu-
facturers. Any particular combination of microgrid elements which satisfy the criteria
of Algorithm 4 can then be aggregated to form a particular “class”. For user simplicity,
each class can be associated with a color (i.e. “red class”, “blue class”, etc.). Of course,
any particular microgird element can simultaneously belong to multiple classes, but
mixing elements of certain classes could lead to instability. Depending on the needs
of a microgrid, the designers could pre-determine the classes of elements which can
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Algorithm 4 Microgrid Design Procedure
Require: Candidate components Σ𝑖 and potential input voltages V𝑗

1: for each microgird component Σ𝑖 do
2: for each potential input voltage V𝑗 do
3: for a sufficient number of 𝛼 ∈ [0, 1] values do
4: Parameterize closed loop gains of Σ𝑖 with 𝛼
5: Compute or measure Σ𝑖’s phase response 𝜃𝑖(𝛼,V𝑗 , 𝜔)

end
end

end
6: for each ascending value of 𝛼 do
7: Plot 𝜃𝑖(𝛼,V𝑗 , 𝜔)± 90∘, ∀𝑖,∀𝑗,∀𝜔 > 0
8: if there exists continuous overlap between all phase plots then
9: All components are plug-and-play stable for this 𝛼

10: else
11: either terminate at this 𝛼 or remove non-overlapping item

end
end

12: return Maximum 𝛼 and non-rejected Σ𝑖, V𝑗 pairs

be plug-and-play added to the microgrid without compromising the stability of the
network. Users of the microgrid, then, would only need to check if a load, for example,
satisfies the class designation of the microgrid. If it does, it can be safely added (i.e.
plugged in) to any arbitrary location in the network without compromising stability.

3.3 Decentralized Small-Signal Stability Certificates

for AC Microgrids

We now offer a direct extension of the proposed standards to AC microgird networks.

3.3.1 Decentralized Stability of AC Microgrids

We consider an AC microgrid network model whose dynamics are codified by the
system matrix Y

˜
(𝑠). As reviewed in 3.1.3, in the absence of external perturbations,

the system satisfies 0 = Y
˜

(𝑠)𝑣(𝑠), just like in DC grids. In AC grids, though, the

nodal voltages are characterized by two orthogonal components:

𝑣(𝑠) = [𝑣𝑑,1(𝑠), 𝑣𝑞,1(𝑠), . . . 𝑣𝑑,𝑛(𝑠), 𝑣𝑞,𝑛(𝑠)]𝑇 . (3.45)
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As noted in 3.1.3, the entries inside the system admittance matrix are all 2×2 matrices:

Y
˜

(𝑠) = 𝐸⊤
𝑎

⎡⎢⎢⎣
𝒴𝑖𝑗(𝑠) 0

. . .

0 𝒴𝑘𝑙(𝑠)

⎤⎥⎥⎦𝐸𝑎

⏟  ⏞  
Y
˜

𝐿(𝑠)

+

⎡⎢⎢⎣
𝒴1(𝑠) 0

. . .

0 𝒴𝑛(𝑠)

⎤⎥⎥⎦
⏟  ⏞  

Y
˜

𝑆(𝑠)

(3.46)

where 𝐸𝑎 is the augmented admittance matrix from (2.158), and each 𝒴(𝑠) ∈ C2×2

(for all system components). We note that (3.46) obeys Lemma 5, and the associated
parameterized matrix Y

˜
(𝑠, 𝛼) obeys Lemma 6, which we restate as Lemma 8.

Lemma 8. Assume network Y
˜
≡ Y

˜
(𝑠, 𝛼) is stable for 𝛼 = 0. Set 𝑠 = j𝜔. If

Y
˜

+ Y
˜

† ≻ 0, ∀𝜔 ≥ 0, ∀𝛼 ∈ [0, 1], (3.47a)

then Y
˜

(𝑠, 𝛼) is stable for all gain values up to 𝛼 = 1.

Proof. If (3.47a) is satisfied, Y
˜

cannot become singular for any allowable values of 𝜔

and 𝛼, so no eigenmodes can cross into the RHP.

Replacing Rotational Functions with DQR-Transformation Matrices

At this point, though, we acknowledge the central modeling difference between AC
and DC microgrid networks.

• In DC microgrids, component dynamics can be modeled with scalar transfer
functions 𝑌 (𝑠) ∈ C1×1. To ensure the positive realness of the associated FRF
𝑌 (𝑠 = j𝜔) across frequencies, the simple scalar rotational function 𝒟(𝜔, 𝛼) =

𝑒j𝜑(𝜔,𝛼) of (3.20) can be applied, such that Re{𝑌 (𝑠 = j𝜔) · 𝑒j𝜑(𝜔,𝛼)} > 0.

• In AC microgrids, component dynamics must be modeled with 2 × 2 matrix
transfer functions 𝒴(𝑠) ∈ C2×2. To ensure the positive definiteness of the asso-
ciated FRFs, a scalar rotational function will not suffice, so we instead leverage
the (parameterized) DQR-transformation matrices from Definition 4, such that
M(𝜔, 𝛼)𝒴(𝜔, 𝛼)Γ(𝜔, 𝛼) ≻ 0.

We now offer an extension of Lemma 8, where Y
˜

(𝑠, 𝛼) is scaled by nonsingular trans-

formation matrices M ∈ C2𝑛×2𝑛 and Γ ∈ C2𝑛×2𝑛.
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Lemma 9. Assume Y
˜
≡ Y

˜
(𝑠, 𝛼) is stable for 𝛼 = 0. Set 𝑠 = j𝜔. If there exist

nonsingular transformation matrices M ≡M(𝜔, 𝛼) and Γ ≡ Γ(𝜔, 𝛼) which satisfy

(MY
˜
Γ) + (MY

˜
Γ)† ≻ 0, ∀𝜔 ≥ 0, ∀𝛼 ∈ [0, 1], (3.48)

then Y
˜

(𝑠, 𝛼) is stable for all gain values up to 𝛼 = 1.

Proof. Suppose that Y
˜

(𝜔, 𝛼) is singular for some allowable values of 𝜔 and 𝛼. Then

MY
˜
Γ is also singular for any (nonsingular) choices of M and Γ, so (3.48) cannot be

strictly positive definite. Therefore, if (3.48) is satisfied, Y
˜

cannot become singular,

and no eigenvalues can cross into the RHP.

We now offer a decentralized version of Lemma 9 which is entirely analogous to
Theorem 4 in the DC case. This theorem, which represents the main contribution of
this section, considers the full set 𝒞 of components (lines, loads, and sources 𝒴𝑘 ≡
𝒴𝑘(𝜔, 𝛼)) which are used to construct the parameterized version of Y

˜
(𝑠) in (3.46)

(i.e. Y
˜

(𝑠, 𝛼)). In the proof, we assume M and Γ take the following block diagonal

structure, where each block M, Γ ∈ C2×2:

M =

⎡⎢⎢⎣
M

. . .

M

⎤⎥⎥⎦ , Γ =

⎡⎢⎢⎣
Γ

. . .

Γ

⎤⎥⎥⎦ . (3.49)

Theorem 5. Assume Y
˜
≡ Y

˜
(𝑠, 𝛼) is stable for 𝛼 = 0. Set 𝑠 = j𝜔. If there exist

parameterized DQR-transformation matrices M ≡ M(𝜔, 𝛼) and Γ ≡ Γ(𝜔, 𝛼) which
satisfy

det{M(𝜔, 𝛼)} ≠ 0, ∀𝜔 ≥ 0, ∀𝛼 ∈ [0, 1] (3.50a)
det{Γ(𝜔, 𝛼)} ≠ 0, ∀𝜔 ≥ 0, ∀𝛼 ∈ [0, 1] (3.50b)

(M𝒴𝑘Γ) + (M𝒴𝑘Γ)† ≻ 0, ∀𝜔 ≥ 0, ∀𝛼 ∈ [0, 1], ∀𝑘 ∈ 𝒞, (3.50c)

then Y
˜

(𝑠, 𝛼) is stable for all gain values up to 𝛼 = 1.

Proof. We follow the same logic as in the proof of Theorem 4. If Y
˜

(𝑠, 𝛼) is driven

unstable, then there must be some point 𝜔⋆, 𝛼⋆ where Y
˜

(𝜔, 𝛼) becomes singular.

At this point, the matrix MY
˜
Γ must also be singular. Assume, though, that (3.50)
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holds. Decomposing the system matrix via (3.46) and applying (3.49) yields

MY
˜
Γ = MY

˜
𝐿Γ + MY

˜
𝑆Γ. (3.51)

If there is no vector 𝑣⋆ ̸= 0 such that (𝑣⋆)†MY
˜
Γ𝑣⋆ = 0, then Y

˜
never becomes

singular, and no eigenmode may cross into the right half plane.
As a direct consequence of (3.50c),

0 = min
𝑣 ̸=0
{𝑣†(MY

˜
𝑆Γ)𝑣} (3.52)

0 = min
𝑣 ̸=0
{𝑣†(MY

˜
𝐿Γ)𝑣}. (3.53)

since Y
˜
𝑆, is a block diagonal matrix, and Y

˜
𝐿 is a graph Laplacian. Since these matrices

cannot share any null vectors, though, 0 > min𝑣 ̸=0{𝑣†(M(Y
˜
𝑆 + Y

˜
𝐿)Γ)𝑣}, and Y

˜
can

never be driven singular. Thus, no eigenmode can cross into the unstable RHP.

As described in the previous section, the rotational functions 𝒟(𝜔, 𝛼) = 𝑒j𝜑(𝜔,𝛼)

used to certify stability of DC microgrids can be determined by visual inspection of
properly parameterized phase portrait plots, such as in Fig. 3-7. In the AC micro-
grid case, where transformation matrices are instead required, such visual inspection
methods are not necessary applicable (due to the high-dimensional nature of the
problem of the problem). In the following subsection, we provide one such rotational
matrix which can be used to certify the stability of a particular class of AC microgrid
systems.

3.3.2 Test Results: Droop-Controlled Microgrid

We are now in the position to construct fully decentralized stability certificates that
are valid for inverter-based microgrids of arbitrary size. We assume this system
contains two components: droop controlled inverters, and RL lines/loads. To analyze
this system, we first parameterize the droop controller from (3.15) via

𝒴𝑖(𝜔, 𝛼) =

[︃
𝑅𝑐 + j𝜔𝐿𝑐 −𝑋𝑐 − 𝛼·𝑘𝑞

1+𝜏j𝜔

𝑋𝑐 + 𝛼·𝑘𝑝
j𝜔−𝜏𝜔2 𝑅𝑐 + j𝜔𝐿𝑐

]︃−1

, (3.54)

where we have simply multiplied both 𝑘𝑝 and 𝑘𝑞 coefficients by 𝛼, so that 𝛼 = 0

corresponds to a definitely stable system. As the base case, we use inverter coupling
resistance and reactance parameters of 𝑅𝑐 = 0.01 pu and 𝑋𝑐 = 0.015 pu, respectively
(per unit values of impedances in inverter-based microgrids are always small [184]).

164



The inverter frequency droop coefficient is 𝑘𝑝 = 1.3 ·10−3 pu (0.13%), and the voltage
droop coefficient is 𝑘𝑞 = 7.5 · 10−3 pu (0.75%). Network line reactance and resistance
values are chosen to be the same as the corresponding inverter coupling inductance
and resistance values. The corresponding line admittance 𝒴𝑗𝑘 is given by (3.10).

In our previous works on the topic [182], we have identified that M = 1, Γ = 1 can
certify stability at high frequencies, and M = 𝑇 4, Γ = 1 (where 𝑇 4 is a basis matrix
associated with (2.179)) can certify stability at low frequencies. In order to unite the
stability guarantees in these separate frequency regions, we propose to parameterize
the transformation matrix M with a sigmoid function 𝜎𝑝(𝜔) via

M(𝜔, 𝛼) =

[︃
𝜎𝑝(𝜔) 𝜎𝑝(𝜔)− 1

1− 𝜎𝑝(𝜔) 𝜎𝑝(𝜔)

]︃
(3.55)

𝜎𝑝(𝜔) =
1

1 + 𝑒−𝛽𝑡(𝜔−𝜔𝑡)
, (3.56)

where 𝛽𝑡 > 0 controls the steepness of the sigmoid transition and 𝜔𝑡 > 0 controls the
location of the sigmoid transition. This matrix M(𝜔, 𝛼) has three key properties:

lim
𝜔→0

M(𝜔, 𝛼) ≈

[︃
0 −1

1 0

]︃
(3.57a)

lim
𝜔→∞

M(𝜔, 𝛼) =

[︃
1 0

0 1

]︃
(3.57b)

det {M(𝜔, 𝛼)} = 𝜎𝑝(𝜔)2 − (𝜎𝑝(𝜔)− 1) (1− 𝜎𝑝(𝜔)) (3.57c)

= 1 + 2𝜎𝑝(𝜔)(𝜎𝑝(𝜔)− 1) (3.57d)

̸= 0 (3.57e)

Due to its nonsingularity, it represents a suitable transformation for satisfying con-
dition (3.50). Before testing this matrix, we first showcase results associated with
the naive choice of M = Γ = 1. These results are shown in Fig. (3-12), where we
plot the eigenvalues of (M𝒴𝑘Γ) + (M𝒴𝑘Γ)† from (3.50c). As can be seen in this fig-
ure, for large values of 𝛼 and low values of frequency, one of the inverter eigenvalues
“dips” negative into the red region, so (3.50) is not satisfied. Therefore, decentralized
stability certification is not achieved.

In the second test, we keep Γ = 1, but we set M equal to (3.55). These results
are shown in Fig. 3-13, where we see that, across all considered gain and frequency
values, no eigenvalues become negative. Accordingly, our choice of transformation
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Figure 3-12: Plotted are the eigenvalues associated with the matrix (M𝒴𝑘Γ) +
(M𝒴𝑘Γ)†, for both inverter and line admittances, across a continuum of frequency
and gain values. In this trivial case, M = Γ = 1. Since inverter eigenvalues dip into
the negative (i.e. lower red shaded) region, (3.50) cannot be satisfied.

matrices satisfies (3.50), and so decentralized stability certificates can be generated.
That is, an arbitrary number of the considered devices can be interconnected in an
arbitrary manner, and the resulting network will be guaranteed small signal stable.
Of course, the resulting stability certificate is only valid for devices whose parameters
match the ones tested in this subsection and for gain values which are less than or
equal to 𝛼 = 10. Testing a broader range of parameter values and devices can be
achieved by simply plotting their corresponding eigenvalue curves in Fig. 3-13 and
ensuring that no eigenvalues dip negative.

3.3.3 Connecting AC Microgrid Decentralized Stability Cer-

tificates to Forced Oscillation Source Location

Before concluding this chapter, we offer brief remarks on the connection between
the proposed AC microgird stability standards and the problem of locating forced
oscillations in transmission networks. If (3.50) can be satisfied, such that parameter-
ized matrices M(𝜔, 𝛼) and Γ(𝜔, 𝛼) can simultaneously rotate all microgird elements
positive definite, then (2.126) implies there is some quadratic quantity which is every-
where dissipated in the microgrid network. This furthermore implies that there exists
a time domain integral which could trace the “flow” of this quadratic quantity (using
only terminal device measurements). Therefore, there would exist an energy-based
procedure which could locate the sources of forced oscillations with complete accu-
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Figure 3-13: Plotted are the eigenvalues associated with the matrix (M𝒴𝑘Γ) +
(M𝒴𝑘Γ)†, for both inverter and line admittances, across a continuum of frequency
and gain values. In this non-trivial case, Γ = 1, but M is set to (3.55). Since no
eigenvalues dip into the negative (i.e. lower red shaded) region, (3.50) is satisfied.

racy (i.e. the quadratic flow would always lead back to the source of the oscillation).
While locating the sources of forced oscillations is not necessarily the goal of (3.50)
and the associated theorem, it is interesting to note the mathematical underpinnings
which connect energy-based forced oscillation source location procedures (i.e. the
DEF method) and procedures which can produce decentralized stability certificates
for microgrid networks.

167



168



Chapter 4

Vector Fitting Approaches for
Real-Time Predictive Modeling of
Low Frequency Power System
Dynamics

This chapter is broken into three sections. In the first section, we provide the math-
ematical background which will be necessary for solving the problems considered in
this chapter. In the second section, we derive the Real-Time Vector Fitting (RTVF)
scheme and test its application on two types of simulated systems: synthetic test sys-
tems and high order closed loop generator systems. In the third section, we propose
the stochastic-RTVF (sRTVF) formulation, which is suitable for observing dynamics
which are corrupted by unobservable stochastic inputs (i.e. stochastically-obscured
dynamics).

4.1 Mathematical Background

4.1.1 Overview of the Time Domain Vector Fitting Algorithm

We consider a possibly nonlinear dynamic system 𝒮 with input and output signals
denoted as 𝑢(𝑡) ∈ R𝑃 and 𝑦(𝑡) ∈ R𝑃 , respectively. For later use, we denote with
𝑥(𝑡) ∈ R𝑁̄ some unknown system state vector, where 𝑁̄ represents the true (physical)
order of the system dynamics. We assume no information on the internal system
representation; instead, we assume a measurement tool is available that returns 𝐾

169



samples of time-domain input-output vectors

𝑢(𝑡𝑘),𝑦(𝑡𝑘) 𝑘 = 1, ..., 𝐾 (4.1)

acquired at sampling rate 𝐹𝑠. Without loss of generality, we set 𝑡1 = 0 throughout
this thesis. All derivations will hold true for 𝑡1 ̸= 0, provided the time variable is
redefined as 𝑡← 𝑡− 𝑡1. When the underlying system 𝒮 is Linear and Time-Invariant
(LTI), Laplace-domain input and output signals are related by

𝑌 (𝑠) = H̆(𝑠)𝑈(𝑠). (4.2)

An estimate H(𝑠) of the true transfer function H̆(𝑠) can be determined from the
samples (4.1) through one of the several available data-driven model order reduction
methods. In particular, the TDVF scheme [73, 71, 72] considered in this work assumes
that the system is initially at rest, and the initial conditions vanish identically as

𝑢(0) ≡ 0, 𝑦(0) ≡ 0, 𝑥(0) ≡ 0. (4.3)

This setting guarantees that only the zero-state response contribution is present in
the output samples. The basic TDVF scheme assumes availability of

• time series of each output 𝑦𝑖𝑗(𝑡) at port 𝑖 excited by a single input 𝑢𝑗(𝑡) placed
at port 𝑗 and acting alone, with 𝑢𝑘 ̸=𝑗 = 0; this requirement imposes a restriction
on the training sequences that can be used for model extraction;

• some initial estimate of the dominant system poles {𝑞𝑛, 𝑛 = 1, . . . , 𝑁}. Usu-
ally, such poles are initialized as random real or complex conjugate pairs with
Re{𝑞𝑛} < 0 and |𝑞𝑛| < Ω, where Ω is the modeling bandwidth of interest [73, 76].

Based on the training data, TDVF constructs the approximation

𝑑0 · 𝑦𝑖𝑗(𝑡) +
𝑁∑︁

𝑛=1

𝑑𝑛 · 𝑦(𝑛)𝑖𝑗 (𝑡) ≈ 𝑐
(0)
𝑖𝑗 · 𝑢𝑗(𝑡) +

𝑁∑︁
𝑛=1

𝑐
(𝑛)
𝑖𝑗 · 𝑢

(𝑛)
𝑗 (𝑡) (4.4)

for 𝑡 = 𝑡𝑘 with 𝑘 = 1, . . . , 𝐾, where 𝑐
(𝑛)
𝑖𝑗 and 𝑑𝑛 are unknown coefficients to be

determined via a linear least squares solution. In (4.4), superscript (𝑛) denotes the
result obtained by the single-pole filter (i.e. convolution) via

𝑧(𝑛)(𝑡) =

∫︁ 𝑡

0

𝑒𝑞𝑛(𝑡−𝜏)𝑧(𝜏)𝑑𝜏 (4.5)
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on any arbitrary signal 𝑧(𝑡) with 𝑧(0) = 0. The associated linear least-squares problem
is solved for the coefficients 𝑐

(𝑛)
𝑖𝑗 and 𝑑𝑛:

min
𝑑𝑛,𝑐

(𝑛)
𝑖𝑗

𝐾∑︁
𝑘=1

⃒⃒⃒⃒
⃒𝑑0 · 𝑦𝑖𝑗(𝑡𝑘)− 𝑐

(0)
𝑖𝑗 · 𝑢𝑗(𝑡𝑘) +

𝑁∑︁
𝑛=1

(︁
𝑑𝑛 · 𝑦(𝑛)𝑖𝑗 (𝑡𝑘)− 𝑐

(𝑛)
𝑖𝑗 · 𝑢

(𝑛)
𝑗 (𝑡𝑘)

)︁⃒⃒⃒⃒⃒
2

. (4.6)

The time domain approximation (4.4) corresponds to the frequency-domain relation

𝑌𝑖𝑗(𝑠) ≈ 𝐻𝑖𝑗(𝑠)𝑈𝑗(𝑠) ≈
𝑐
(0)
𝑖𝑗 +

∑︀𝑁
𝑛=1

𝑐
(𝑛)
𝑖𝑗

𝑠− 𝑞𝑛

𝑑0 +
∑︀𝑁

𝑛=1

𝑑𝑛
𝑠− 𝑞𝑛

· 𝑈𝑗(𝑠) (4.7)

which provides an element-wise rational approximation 𝐻𝑖𝑗(𝑠) ≈ 𝐻̆𝑖𝑗(𝑠) written in
barycentric form. The initial poles 𝑞𝑛 in (4.7) cancel out, and the actual poles of
𝐻𝑖𝑗(𝑠) correspond to the zeros 𝑧𝑛 of the denominator

𝐷(𝑠) = 𝑑0 +
𝑁∑︁

𝑛=1

𝑑𝑛
𝑠− 𝑞𝑛

. (4.8)

Problem (4.4) is solved iteratively, by using these zeros as starting poles for the
next iteration via 𝑞𝑛 ← 𝑧𝑛. Iterations stop when the poles and/or the least-squares
residual (fitting error) stabilize [73, 108], or alternatively when a maximum number of
iterations 𝜈max is reached. A good proxy for pole convergence is provided by the norm
of the vector 𝑑 = [𝑑1, . . . , 𝑑𝑁 ]⊤, which collects all denominator coefficients excluding
𝑑0. When such coefficients approach zero, the denominator function 𝐷(𝑠) approaches
a constant value, implying that the poles and the zeros of 𝐷(𝑠) are nearly coincident.
Under this condition, the poles become invariant through iterations and convergence
is attained. Therefore, the iterations can be stopped when√︁∑︀𝑁

𝑖=1 𝑑
2
𝑖 ≤ 𝜖 (4.9)

where 𝜖 is a desired tolerance. Alternatively, a maximum number of algorithm itera-
tions 𝜈max can be set. Pseudocode for the basic TDVF scheme, which constructs the
approximate rational transfer matrix H(𝑠), is reported in Algorithm 5. Furthermore,
Fig. 4-1 depicts the TDVF pole converge procedure graphically, where convergence
is achieved when (4.9) is satisfied.
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Algorithm 5 The TDVF algorithm
Input: Time samples 𝑢(𝑡𝑘), 𝑦(𝑡𝑘), sampling frequency 𝐹𝑠, starting poles {𝑞1, . . . , 𝑞𝑁}, max-
imum iteration number 𝜈max

Output: Estimated transfer function H(𝑠)

1: for 𝑗 = 1 . . . 𝑃 do
2: for 𝜈 = 1, .., 𝜈max do
3: Compute the filtered signals 𝑢̃

(𝑛)
𝑗 , 𝑦(𝑛)𝑖𝑗 using (4.5)

4: Build and solve the least squares problem (4.6)
5: Compute the zeros 𝑧𝑛 of denominator 𝐷(𝑠) in (4.7)
6: Set 𝑞𝑛 ← 𝑧𝑛

end
7: Solve (4.6) by constraining 𝑑0 = 1 and 𝑑𝑛 = 0

end
8: return: H(𝑠), where 𝐻𝑖𝑗(𝑠) is the numerator of (4.7)

Figure 4-1: Shown is the pole convergence procedure associated with TDVF. In this
figure, 𝑞 = [𝑞1, . . . , 𝑞𝑁 ]𝑇 is the vector of poles from (4.8), 𝑑 = [𝑑1, . . . , 𝑑𝑁 ]𝑇 is the
vector of denominator coefficients from the numerator of (4.8), 𝑒 = [1, . . . , 1]𝑇 is a
vector of 1’s, and 𝜆{·} is the eigenvalue operator.
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4.1.2 The Overdetermined Modified Yule–Walker Method

In this subsection, we outline the Overdetermined Modified Yule–Walker (OMYW)
method for a SISO discrete time system [174]. This method was successfully applied
to a power system inference problem in the highly cited paper [189]. Although we
do not make exact use of the OMYW method, we leverage its key innovation when
deriving the stochastic-RTVF methodology later in this thesis.

To begin, we assume a discrete-time linear system is excited by unobservable,
stochastic input sequence 𝑢[𝑛], which is pure AWGN. The output sequence is given
by 𝑦[𝑛]. The so-called Autoregressive-Moving Average (ARMA) model relates these
sequences via

𝑦[𝑛] + 𝑎1𝑦[𝑛−1] + · · ·+ 𝑎𝑁𝑦[𝑛−𝑁 ] = 𝑏0𝑢[𝑛] + 𝑏1𝑢[𝑛−1] + · · ·+ 𝑏𝑀𝑢[𝑛−𝑀 ], (4.10)

where the autoregressive sequence is of order 𝑁 , and the moving average sequence is
of order 𝑀 . We now define the auto-correlation function (ACF)

𝑟(𝑘) = E{𝑦[𝑛]𝑦[𝑛− 𝑘]}

where E{·} is the expected value operator. We now multiply the ARMA sequence
through by 𝑦[𝑛− 𝑘] and take the expected value:

𝑟(𝑘) +
𝑁∑︁
𝑖=1

𝑎𝑖𝑟(𝑘 − 𝑖) =
𝑀∑︁
𝑗=0

𝑏𝑗E{𝑦[𝑛− 𝑘]𝑢[𝑛− 𝑗]}. (4.11)

The OMYW method makes the following key observation: for any 𝑘 > 𝑀 , the RHS
must be equal to 0, since the output must be uncorrelated with future noise inputs:

𝑟(𝑘) = −
𝑁∑︁
𝑖=1

𝑎𝑖𝑟(𝑘 − 𝑖), ∀𝑘 > 𝑀. (4.12)

For 𝑘 = 𝑀 + 1,𝑀 + 2, . . . ,𝑀 + 𝑃 , (4.12) can be rewritten as the linear system
𝑟 = −R𝑎, where the Toeplitz autocorrelation matrix R ∈ R𝑃×𝑁 takes the form

R =

⎡⎢⎢⎢⎢⎣
𝑟(𝑀) 𝑟(𝑀 − 1) · · · 𝑟(𝑀 −𝑁 + 1)

𝑟(𝑀 + 1) 𝑟(𝑀) · · · 𝑟(𝑀 −𝑁 + 2)
...

... . . . ...
𝑟(𝑀 + 𝑃 − 1) 𝑟(𝑀 + 𝑃 − 2) · · · 𝑟(𝑀 −𝑁 + 𝑃 )

⎤⎥⎥⎥⎥⎦ . (4.13)
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As a final step, we approximate the true ACF via

𝑟(𝑘) ≈ 1

𝐻−𝑘

𝐻∑︁
𝑛=𝑘

𝑦[𝑛]𝑦[𝑛− 𝑘], (4.14)

where 𝑦[𝐻] is the final element in the sequence. The entries of R are approximated
similarly. Assuming 𝑃 > 𝑁 , the associated linear system may be solved using over-
determined least squares:

𝑎 = −(R𝑇R)−1R𝑇𝑟. (4.15)

If 𝑃 = 𝑁 , then (4.13) is square and the system is exactly determined. In [143], the
authors assume 𝑃 = 𝑁 and 𝑀 = 0, where the assumption 𝑃 = 𝑁 is a question of
data section and model order, and the assumption of 𝑀 = 0 assumes the system can
be approximated as purely auto-regressive, with no moving average component. Once
the vector 𝑎 has been solved for, the “poles” of the system can be inferred [189].

4.2 Handling Initial Conditions in Vector Fitting for

Real Time Modeling of Power System Dynamics

In this section, we derive the Real-Time Vector Fitting procedure.

4.2.1 A New Problem Setting for TDVF

Let us now consider system 𝒮 operating in real time, with input and output measured
signals (4.1) collected during system operation. Since data recording may start at
an arbitrary time instant when system is not at rest, the output samples 𝑦(𝑡) may
include contributions from both the zero-input and the zero-state response, implying
that all initial conditions cannot be considered as vanishing as in (4.3). Moreover, all
input channels are expected to be active concurrently. Therefore, the basic TDVF
assumptions do not hold and need a generalization.

From now on, we assume a mildly nonlinear systems 𝒮, whose dynamics can be
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approximated [25] by splitting inputs, outputs and states as

𝑢(𝑡) = 𝑈0 + ̃︀𝑢(𝑡),

𝑦(𝑡) = 𝑌0 + ̃︀𝑦(𝑡),

𝑥(𝑡) = 𝑋0 + ̃︀𝑥(𝑡),

(4.16)

where
𝑈0 = 𝑢(0), 𝑋0 = 𝑥(0), 𝑌0 = 𝑦(0) (4.17)

are regarded as non-necessarily vanishing initial conditions. The evolution of the
small-signal components ̃︀𝑢(𝑡), ̃︀𝑦(𝑡), ̃︀𝑥(𝑡) can be accurately related by an LTI operator
with transfer function H̆(𝑠). Our main objective is to devise a numerical scheme
that, based on the samples (4.1), returns an estimate H(𝑠) ≈ H̆(𝑠) of the small-signal
transfer function. This objective is attained by exploiting two generalizations of the
basic TDVF scheme:

1. We remove the requirements of pure zero-state conditions by allowing for the
presence of nonvanishing initial conditions (4.17). This is addressed in 4.2.2.

2. We allow for all input components 𝑢𝑗 acting concurrently in the training time
series, as in common system operation conditions. This is addressed in 4.2.3.

4.2.2 Handling Initial Conditions

In this section, we formulate a generalized identification problem that provides an
estimate H(𝑠) of the small-signal transfer function, assuming non-vanishing initial
conditions. Although initial conditions 𝑈0, 𝑌0 are known from the training data, no
information on the initial state 𝑋0 is available. Thus, a direct decomposition of 𝑦(𝑡)

into its zero-state and zero-input contributions is generally not possible. This section
provides theoretical justification for the proposed RTVF formulation.

In order to characterize the role of the unknown initial state, we first consider a
generic LTI system in state-space form:

𝑥̇(𝑡) = A𝑥(𝑡) + B𝑢(𝑡),

𝑦(𝑡) = C𝑥(𝑡) + D𝑢(𝑡),
(4.18)

with the only restriction that A should be nonsingular. Inserting the signal decom-

175



position (4.16) into (4.18) leads to

𝑥̇(𝑡) = ̃̇︀𝑥(𝑡) = A(𝑋0 + ̃︀𝑥(𝑡)) + B(𝑈0 + ̃︀𝑢(𝑡)) (4.19)̃︀𝑦(𝑡) + 𝑌0 = C(𝑋0 + ̃︀𝑥(𝑡)) + D(𝑈0 + ̃︀𝑢(𝑡)). (4.20)

The output (4.20) can be equivalently rewritten by splitting the constant and the
time-varying small-signal components as

𝑌0 = C𝑋0 + D𝑈0, (4.21)̃︀𝑦(𝑡) = C̃︀𝑥(𝑡) + D̃︀𝑢(𝑡), ∀𝑡 ≥ 0. (4.22)

Two scenarios are possible:

1. The system is at constant steady-state1 for 𝑡 = 0 (equivalently, ∀𝑡 ≤ 0). Under
this assumption, all small-signal components vanish for 𝑡 ≤ 0. Therefore, (4.19)
reduces to

A𝑋0 + B𝑈0 = 0 → 𝑋0 = −A−1B𝑈0 (4.23)

and provides the initial state condition 𝑋0. Since A is nonsingular, the sys-
tem has no poles at the origin and supports constant steady-state operation.
Combining (4.19) with (4.23), for 𝑡 > 0, the small-signal components fulfill the
standard dynamic equation

̃̇︀𝑥(𝑡) = Ã︀𝑥(𝑡) + B̃︀𝑢(𝑡). (4.24)

Combining (4.22) and (4.24) provides the small-signal transfer function H̆(𝑠) in
terms of the state-space matrices:

H̆(𝑠) = C(𝑠1−A)−1B + D =
N̆(𝑠)

𝐷̆(𝑠)
(4.25)

with 𝐷̆(𝑠) = |𝑠I − A|. Identification of a rational model for H̆(𝑠) can be
performed by subtracting the initial conditions 𝑈0, 𝑌0 from the input and out-
put signals and then applying a zero-state identification scheme, such as basic
TDVF, to small-signal components ̃︀𝑢(𝑡), ̃︀𝑦(𝑡).

2. The second scenario is relevant for our application, and it corresponds to the
1This scenario is common in electronic circuit simulation, where a constant bias is applied first

and all initial conditions are found; transient analysis is performed next, starting from the computed
initial conditions.
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case where the system is not operating under constant steady-state conditions
for 𝑡 < 0. In this setting, (4.23) does not hold and

𝑋0 ̸= −A−1B𝑈0. (4.26)

Therefore, even if the initial conditions 𝑈0, 𝑌0 are removed from the input
and output signals, the corresponding small-signal output ̃︀𝑦(𝑡) still includes a
contribution from the initial state. This contribution is analyzed next.

Characterization of residual zero-input contributions

Assuming that 𝑈0 and 𝑋0 are known, system evolution in terms of small-signal state
components is obtained by integrating the dynamic equation (4.19) for 𝑡 > 0. For
clarity, we perform this integration step-by-step:

̃̇︀𝑥(𝑡) = A(𝑋0 + ̃︀𝑥(𝑡)) + B(𝑈0 + ̃︀𝑢(𝑡)) (4.27)

𝑒−A𝑡
(︁̃̇︀𝑥(𝑡)−Ã︀𝑥(𝑡)

)︁
= 𝑒−A𝑡 (B̃︀𝑢(𝑡) + A𝑋0 + B𝑈0) (4.28)∫︁ 𝑡

0

𝑒−A𝜏
(︁̃̇︀𝑥(𝜏)−Ã︀𝑥(𝜏)

)︁
𝑑𝜏 =

∫︁ 𝑡

0

𝑒−A𝜏 (B̃︀𝑢(𝜏) + A𝑋0 + B𝑈0) 𝑑𝜏 (4.29)

𝑒−A𝜏 ̃︀𝑥(𝜏)|𝑡0 =

∫︁ 𝑡

0

𝑒−A𝜏 (B̃︀𝑢(𝜏) + A𝑋0 + B𝑈0) 𝑑𝜏 (4.30)

̃︀𝑥(𝑡) =

∫︁ 𝑡

0

𝑒A(𝑡−𝜏) (B̃︀𝑢(𝜏) + A𝑋0 + B𝑈0) 𝑑𝜏 (4.31)

Analytically integrating the constant RHS terms in (4.31) allows us to write

̃︀𝑥(𝑡) =

∫︁ 𝑡

0

𝑒A(𝑡−𝜏)B̃︀𝑢(𝜏)𝑑𝜏 +
[︀
𝑒A𝑡 − 1

]︀
(𝑋0 + A−1B𝑈0)⏟  ⏞  

𝑇0

, (4.32)

where the contribution of the initial state condition is explicit. Note that, in case of
steady-state operation for 𝑡 < 0, the second term in (4.32) vanishes since 𝑇0 = 0, and
the corresponding solution reduces to the solution of the small-signal system (4.24).
The term 𝑇0 can thus be considered as the difference between the actual initial state
𝑋0 and the constant state that would be obtained if the system were operating under
steady-state conditions excited by the constant input 𝑈0.

Taking the Laplace transform of (4.32) yields

̃︁𝑋(𝑠) = (𝑠1−A)−1B ̃︀𝑈(𝑠) +
[︀
(𝑠1−A)−1 − 𝑠−11

]︀
𝑇0. (4.33)
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Inserting (4.33) into the output equation (4.22) leads to

̃︀𝑌 (𝑠) = C̃︁𝑋(𝑠) + D ̃︀𝑈(𝑠) = H̆(𝑠) ̃︀𝑈(𝑠) + Γ0(𝑠), (4.34)

where H̆(𝑠) is given by (4.25). Additionally,

Γ0(𝑠) = (C(𝑠1−A)−1 − 𝑠−1C)𝑇0 =
𝐺̆(𝑠)

𝑠 · 𝐷̆(𝑠)
, (4.35)

where 𝐺̆(𝑠) is an unknown polynomial vector. Relation (4.34) is therefore equivalent
to ̃︀𝑌 (𝑠) =

N̆(𝑠)

𝐷̆(𝑠)
̃︀𝑈 (𝑠) +

𝐺̆(𝑠)

𝑠 · 𝐷̆(𝑠)
. (4.36)

The two terms in (4.36) share the same denominator 𝐷̆(𝑠) up to a pole at 𝑠 = 0,
which represents the constant contribution of the non-vanishing initial conditions.
This observation is the key enabling factor for building a self-consistent vector fitting
scheme to estimate model H(𝑠) ≈ H̆(𝑠), as it properly takes into account the presence
of the additional term Γ0(𝑠) in (4.34).

4.2.3 The Real-Time Vector Fitting scheme

In this section, we propose our Real-Time Vector Fitting (RTVF) scheme. In partic-
ular, our key idea and the proposed generalizations follow:

1. The key idea of our method consists of adding to the standard rational transfer
function expression an extra term that shares the same denominator 𝐷(𝑠) plus
a pole at 𝑠 = 0, representing the constant contribution of the non-vanishing
initial conditions. ̃︀𝑌 (𝑠) ≈ N(𝑠)

𝐷(𝑠)
̃︀𝑈(𝑠) +

𝐺(𝑠)

𝑠 ·𝐷(𝑠)
. (4.37)

2. Since polynomials N(𝑠) and 𝐷(𝑠) are typically expanded in a standard barycen-
tric form as in (4.7) using an initial pole set 𝑞𝑛, we propose the use of a similar
expansion for the components of the unknown vector 𝐺(𝑠):

𝐺𝑖(𝑠) = 𝑏
(0)
𝑖 +

𝑁∑︁
𝑛=1

𝑏
(𝑛)
𝑖

𝑠− 𝑞𝑛
∀𝑖 = 1, . . . , 𝑃 . (4.38)

3. We further propose to account for multiple inputs potentially exciting the sys-
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tem simultaneously by applying linear superposition and expressing each output
component ̃︀𝑌𝑖(𝑠) in terms of all input components ̃︀𝑈𝑗(𝑠).

The above considerations lead us to parameterize and formulate the fitting condi-
tion (4.37) as

̃︀𝑌𝑖(𝑠) ≈
𝑃∑︁

𝑗=1

𝑐
(0)
𝑖𝑗 +

∑︀𝑁
𝑛=1

𝑐
(𝑛)
𝑖𝑗

𝑠− 𝑞𝑛

𝑑0 +
∑︀𝑁

𝑛=1

𝑑𝑛
𝑠− 𝑞𝑛

̃︀𝑈𝑗(𝑠) +

𝑏
(0)
𝑖 +

∑︀𝑁
𝑛=1

𝑏
(𝑛)
𝑖

𝑠− 𝑞𝑛

𝑠 ·
(︂
𝑑0 +

∑︀𝑁
𝑛=1

𝑑𝑛
𝑠− 𝑞𝑛

)︂ , ∀𝑖 = 1, . . . , 𝑃.

(4.39)

In (4.39), the coefficients 𝑐
(𝑛)
𝑖𝑗 represent the elements in the numerator N(𝑠) of the

small-signal model transfer function H(𝑠) expressed in barycentric form. The coef-
ficients 𝑑𝑛 of the denominator are common to all transfer matrix entries, so that a
common pole set is enforced for the model. Finally, the coefficients 𝑏

(𝑛)
𝑖 provide a

parameterization of the zero-input response in barycentric form, as written in (4.37).
Multiplying both sides by the common denominator and taking the inverse Laplace

transform leads to the following time-domain fitting condition for 𝑡 ≥ 0:

𝑑0 · ̃︀𝑦𝑖(𝑡) +
𝑁∑︁

𝑛=1

𝑑𝑛 · ̃︀𝑦(𝑛)𝑖 (𝑡) ≈
𝑃∑︁

𝑗=1

[︃
𝑐
(0)
𝑖𝑗 · ̃︀𝑢𝑗(𝑡) +

𝑁∑︁
𝑛=1

𝑐
(𝑛)
𝑖𝑗 · ̃︀𝑢(𝑛)

𝑗 (𝑡)

]︃

+ 𝑏
(0)
𝑖 ·Θ(𝑡) +

𝑁∑︁
𝑛=1

𝑏
(𝑛)
𝑖 Θ(𝑛)(𝑡), ∀𝑖 = 1, . . . , 𝑃, (4.40)

where Θ(𝑡) is the Heaviside unit step function, filtered input ̃︀𝑢(𝑛)
𝑗 (𝑡) and output ̃︀𝑦(𝑛)𝑖 (𝑡)

signals are obtained as in (4.5), and the filtered step function signals are

Θ(𝑛)(𝑡) =

∫︁ 𝑡

0

𝑒𝑞𝑛(𝑡−𝜏)Θ(𝜏)𝑑𝜏 . (4.41)

4.2.4 Implementation

In this section, we provide a compact and efficient formulation of the least squares
formulation at the heart of the RTVF routine. Writing (4.40) for 𝑡 = 𝑡𝑘, with 𝑘 =

1, . . . , 𝐾, leads to the following RTVF condition in matrix form:

𝜑𝑖 · 𝑑+
𝑃∑︁

𝑗=1

𝜓𝑗 · 𝑐𝑖𝑗 + 𝛽 · 𝑏𝑖 ≈ 0 ∀𝑖 = 1, 2, ..., 𝑃 , (4.42)
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where the vectors collecting the unknown coefficients are

𝑑 =

⎡⎢⎢⎣
𝑑0
...
𝑑𝑁

⎤⎥⎥⎦ , 𝑐𝑖𝑗 =

⎡⎢⎢⎣
𝑐
(0)
𝑖𝑗
...

𝑐
(𝑁)
𝑖𝑗

⎤⎥⎥⎦ , 𝑏𝑖 =

⎡⎢⎢⎣
𝑏
(0)
𝑖
...

𝑏
(𝑁)
𝑖

⎤⎥⎥⎦ , (4.43)

and where the regressor matrices collecting the filtered signal time samples (according
to (4.5)) are defined as

𝜑𝑖 = −

⎡⎢⎢⎣
̃︀𝑦𝑖(𝑡1) ̃︀𝑦(1)𝑖 (𝑡1) . . . ̃︀𝑦(𝑁)

𝑖 (𝑡1)
...

... . . . ...̃︀𝑦𝑖(𝑡𝑘) ̃︀𝑦(1)𝑖 (𝑡𝐾) . . . ̃︀𝑦(𝑁)
𝑖 (𝑡𝐾)

⎤⎥⎥⎦ (4.44)

𝜓𝑗 =

⎡⎢⎢⎣
̃︀𝑢𝑗(𝑡1) ̃︀𝑢(1)

𝑗 (𝑡1) . . . ̃︀𝑢(𝑁)
𝑗 (𝑡1)

...
... . . . ...̃︀𝑢𝑗(𝑡𝑘) ̃︀𝑢(1)

𝑗 (𝑡𝐾) . . . ̃︀𝑢(𝑁)
𝑗 (𝑡𝐾)

⎤⎥⎥⎦ (4.45)

𝛽 =

⎡⎢⎢⎣
1 Θ(1)(𝑡1) . . . Θ(𝑁)(𝑡1)
...

... . . . ...
1 Θ(1)(𝑡𝐾) . . . Θ(𝑁)(𝑡𝐾)

⎤⎥⎥⎦ . (4.46)

Further, by defining

Δ =
[︁
𝜓1 . . . 𝜓𝑃 𝛽

]︁
, 𝑎𝑖 =

[︁
𝑐𝑇𝑖1 . . . 𝑐𝑇𝑖𝑃 𝑏𝑇𝑖

]︁𝑇
(4.47)

and collecting all components, (4.42) reveals the bordered-block-diagonal structure of
the RTVF least squares system:

⎡⎢⎢⎢⎢⎣
Δ 0 . . . 0 𝜑1

0 Δ . . . 0 𝜑2

...
... . . . ...

...
0 0 . . . Δ 𝜑𝑃

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1

𝑎2

...
𝑎𝑃

𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≈ 0. (4.48)

Standard techniques can be employed to avoid the all-zero trivial solution, as ex-
plained in [75, 73].

As in standard TDVF, once the set of unknown coefficients is found by solv-
ing (4.48), the zeros 𝑧𝑛 of the denominator 𝐷(𝑠) are computed and used as initial
poles for the next iteration. The process is repeated until convergence. Pseudocode
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Figure 4-2: Shown is the pole convergence procedure associated with RTVF. In this
figure, 𝑞 = [𝑞1, . . . , 𝑞𝑁 ]𝑇 is the vector of poles which become increasingly refined as
the procedure iterates.

for RTVF is provided in Algorithm 6. The final steps (lines 8–10) estimate the
residues of a rational approximation based on the fixed poles obtained from the pole
relocation process (lines 1–7). In line 10, the vector ̃︀𝑦𝑖 collects all time samples of the
𝑖-th small-signal output component. Furthermore, Fig. 4-2 graphically portrays the
iteration scheme.

Algorithm 6 The RTVF algorithm
Input: Time samples 𝑢(𝑡𝑘), 𝑦(𝑡𝑘), sampling frequency 𝐹𝑠, starting poles {𝑞1, . . . , 𝑞𝑁}, max-
imum iteration number 𝜈max

Output: Estimated transfer function H(𝑠)

1: Compute ̃︀𝑢(𝑡𝑘)← 𝑢(𝑡𝑘)− 𝑢(𝑡1), ̃︀𝑦(𝑡𝑘)← 𝑦(𝑡𝑘)− 𝑦(𝑡1)
2: for 𝜈 = 1, .., 𝜈max do
3: Compute filtered signals ̃︀𝑦(𝑛)𝑖 (𝑡𝑘), ̃︀𝑢(𝑛)𝑖 (𝑡𝑘), Θ(𝑛)(𝑡𝑘)
4: Build and solve the least squares problem (4.48)
5: Compute the zeros 𝑧𝑛 of denominator 𝐷(𝑠) in (4.8)
6: Set 𝑞𝑛 ← 𝑧𝑛

end
7: Set 𝐷(𝑠) = 1

8: Compute filtered signals ̃︀𝑢(𝑛)𝑖 (𝑡𝑘), Θ(𝑛)(𝑡𝑘)
9: Build matrix Δ and solve Δ𝑎𝑖 ≈ ̃︀𝑦𝑖 for 𝑖 = 1, . . . , 𝑃

10: return: H(𝑠) = N(𝑠), where 𝑁𝑖𝑗(𝑠) is numerator of (4.7)

4.2.5 Numerical Results

Consistency

We tested the RTVF consistency by running a systematic experimental campaign
over a set of synthetic randomly generated LTI reference systems, with the objective
of checking whether RTVF could provide accurate estimates of all system poles. All
modeled systems shared the same dynamic order of 𝑁 = 10, but had different sizes,
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Figure 4-3: Time domain modeling results for a synthetic test case with 𝑃 = 2. The
modeling window starts after 24 s, the validation window starts at 372 s.

with 𝑃 ranging from 2 to 30. The set of input-output data were generated as colored
noise which showed a flat power spectrum up to angular frequency 𝜔max, where the
fastest pole of the reference system appeared. The sampling frequency was fixed to
𝐹𝑠 = 10𝜔max/2𝜋 , and the total number of collected samples was 𝐾 = 5000 in all
cases. The modeling window started at sample 𝑘 = 250.

Three metrics were used to assess performance of RTVF:

• the consistency of the pole estimates, as measured by the Hausdorff distance2

𝑑𝐻(𝒫 ,𝒬) between the set of exact poles 𝒫 = {𝑝1, . . . , 𝑝𝑁} of the true system
and the set of numerically computed poles 𝒬 = {𝑞1, . . . , 𝑞𝑁};

• the worst-case time domain output error, computed as

𝐸∞ = max
𝑖=1,...,𝑃

||𝑦𝑖 − 𝑦𝑖||∞, (4.50)

• and the RMS-normalized maximum error, computed as

𝐸RMS
∞ = max

𝑖=1,...,𝑃

||𝑦𝑖 − 𝑦𝑖||∞
||𝑦𝑖||2

. (4.51)

The experiments showed that RTVF recovered the system poles almost exactly,
with a set distance 𝑑𝐻(𝒫 ,𝒬) ≤ 10−10 for all 29 test cases. Similar results were ob-

2The Hausdorff distance between two sets 𝒫 and 𝒬 is defined as

𝑑𝐻(𝒫,𝒬) = max{sup
𝑝∈𝒫

inf
𝑞∈𝒬
||𝑝− 𝑞||, sup

𝑞∈𝒬
inf
𝑝∈𝒫
||𝑝− 𝑞||}. (4.49)
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tained from the output errors: both 𝐸∞ and 𝐸RMS
∞ were less than 10−11. As Fig. 4-3

shows, there is no practical difference between the model and the output data sam-
ples. In this idealized setting, we conclude that the performance of RTVF is excellent
across all investigated metrics.

To further test the consistency of RTVF, we simulated the presence of measure-
ment noise on the input and output signals (for the case where 𝑃 = 2, 𝑁 = 10).
Signal corruption was performed by adding a vector of zero-mean Gaussian random
variables 𝑥𝑛 to any input or output small-signal vector ̃︀𝑥 as

̃︀𝑥𝑁 = ̃︀𝑥+ 𝑥𝑛, (4.52)

with a prescribed signal to noise ratio

𝛼 = SNR = 20 log
RMS{̃︀𝑥}
RMS{𝑥𝑛}

. (4.53)

In our experiments, we considered increasing levels of SNR, ranging from 10 to 100,
with resolution steps of 2. For each level of SNR, we modeled 𝑅 = 50 different
synthetic systems, and we computed the average Signal to Error Ratio (SER) both in
time and frequency domain, which is defined as follows. Let 𝑧 be a vector collecting
the samples of either a reference time-domain output signal or a target frequency-
domain transfer matrix element, and 𝑧𝑀 the corresponding response of one of the 𝑅

models. Then for this signal the SER is defined as

SER = 20 log
RMS{𝑧}

RMS{𝑧 − 𝑧𝑀}
. (4.54)

For any fixed SNR level, we computed the time-domain TD-SER by averaging the
performance induced by (4.54) over the 𝑅 models and the two output signals. The
frequency-domain FD-SER was computed in the same way, by averaging over the
transfer matrix elements. These two metrics are shown in the top panel of Fig. 4-4.

The meaning of the SER being above or below the black line threshold is that
RTVF is either rejecting or amplifying the presence of the noise on the data, respec-
tively. Since the TD-SER is always above the plane bisector (solid black line), RTVF
is able to partially reject the presence of measurements noise in the training data.
This noise rejection property is expected, since the basis functions involved in the
estimation procedure effectively filter the noisy input and output signals via (4.5).
On the other hand, FD-SER follows the bisector almost exactly, confirming also a
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good frequency-domain accuracy.
The noise-corrupted training input signals for a representative test case for SNR =

16 are depicted in the middle panel of Fig. 4-4, whereas the corresponding extracted
model is validated against the reference time-domain output in the bottom panel.
Even with this significant amount of noise, the time-domain prediction capabilities of
the model are excellent.

IEEE 39-Bus System Results

In order to test the performance of RTVF in a simulated power system setting, we
collected data from time domain simulations performed on the IEEE 39-Bus New
England system. This system includes 10 generators and 19 ZIP loads; the associated
load, network, and generator models and numerical parameters were taken directly
from [87]. The exact modeling of this network, though, is given in Appendix B.1.
Accordingly, each generator was modeled as a 6th order synchronous machine with
3rd order automatic voltage regulators and power system stabilizers; additionally,
each generator was outfitted with a 3rd order turbine governor (Type I) [129]. Each
generator system, with its three controllers, had a total of 15 dynamical states. The
interaction between the generator, its controllers, and the network is shown in Fig. 4-
5. All time domain simulations were performed using MATLAB’s DAE solver ode23t
by setting relative and absolute error tolerances to 10−7 and 10−8, respectively.

Load Perturbations: In order to mimic ambient load fluctuations, we applied an
Ornstein-Uhlenbeck (OU) process [128] to the active and reactive power demands
at each load. The dynamics of these processes are given by 𝜏 𝑢̇𝑝 = −𝑢𝑝 + 𝜂𝑝 and
𝜏 𝑢̇𝑞 = −𝑢𝑞+𝜂𝑞, where 𝜂𝑝, 𝜂𝑞 are zero-mean Gaussian variables, and the “load reversal”
time constant 𝜏 was set to 50s. We further applied a low-pass filter (LPF), with
a cutoff frequency of ∼ 9Hz, to the OU variables such that 𝑢̂ = LPF{𝑢}. This
filtering operation was applied because dynamics above this frequency range become
inconsistent with the quasi-stationary phasor approximation used in modeling the
network’s dynamics. Therefore, high frequency load behavior is effectively neglected.
Finally, these filtered OU variables were parameterized with time variable 𝑡 using a
cubic spline interpolation and applied to the individual ZIP loads via

𝑃 (𝑡,V) = 𝑃0(1 + 𝛽 · 𝑢̂𝑝(𝑡))
(︀
𝑎𝑍V

2
+ 𝑎𝐼V

1
+ 𝑎𝑃V

0)︀ (4.55)

𝑄(𝑡,V) = 𝑄0(1 + 𝛽 · 𝑢̂𝑞(𝑡))
(︀
𝑏𝑍V

2
+ 𝑏𝐼V

1
+ 𝑏𝑃V

0)︀
, (4.56)
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Figure 4-4: Top panel: the trend of TD− SER and FD− SER against the SNR. Mid-
dle panel: corrupting one training input signal (solid line) with SNR=16 (a cloud of
𝑅 = 50 different realizations are depicted in a grey shade). Bottom panel: response of
a time domain model extracted from one noisy data realization (SNR=16) compared
to the reference noise-free signal.

185



Figure 4-5: Shown is the interaction between the generator, its three controllers, and
the network. The PMU collects data at the generator’s point of connection.

where V ≡ V/V0. As a final step, scalar variable 𝛽 in (4.55)-(4.56) was experimentally
tuned to a numerical value of 𝛽 = 50; this tuning generated load perturbations whose
corresponding network voltage perturbations approximately matched those of real
PMU data (in terms of signal strength).

We then applied RTVF to data measured at the machine-network interface in
order to model the generator’s closed-loop dynamics. For modeling purposes, we
treated voltage magnitude V(𝑡) and voltage phase 𝜃(𝑡) signals as inputs, and we
treated current magnitude I(𝑡) and current phase 𝜑(𝑡) signals as outputs. The RTVF
algorithm sought to generate a MIMO model with 𝑃 = 2 and various reduced orders
𝑁 .

In order to validate the quality of the model generated in the absence of measure-
ment noise, we refer to the time and frequency domain references provided by the
exact machine equations. The results are provided in Fig. 4-6. The results show the
model accuracy is excellent in both the time and frequency domains, even though the
reduced model order (in this case 𝑁 = 9) is less than the machine’s true model order
(𝑁̄ = 15).

Algorithm 7 Measurement Noise Application
Input: Voltage & current signals V(𝑡), I(𝑡), 𝜃(𝑡), 𝜑(𝑡); desired SNR
Output: Noisy voltage & current signals V𝑛(𝑡), I𝑛(𝑡), 𝜃𝑛(𝑡), 𝜑𝑛(𝑡)

1: 𝜎V𝑛 ← RMS {V(𝑡)− E {V(𝑡)}} · 10−SNR/20

2: 𝜎I𝑛 ← RMS {I(𝑡)− E {I(𝑡)}} · 10−SNR/20

3: V𝑛(𝑡)← V(𝑡) + 𝜎V𝑛 · 𝜂(𝑡)
4: I𝑛(𝑡)← I(𝑡) + 𝜎I𝑛 · 𝜂(𝑡)
5: 𝜃𝑛(𝑡)← 𝜃(𝑡) + 𝜎V𝑛 · 𝜂(𝑡)/E {V(𝑡)}
6: 𝜑𝑛(𝑡)← 𝜑(𝑡) + 𝜎I𝑛 · 𝜂(𝑡)/E {I(𝑡)}

Return: V𝑛(𝑡), I𝑛(𝑡), 𝜃𝑛(𝑡), 𝜑𝑛(𝑡)

Measurement Noise: In order to further gauge the practical effectiveness of RTVF,
we applied measurement noise to the voltage and current signals measured by the
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Figure 4-6: Noise-free generator model extraction. Top panel: frequency domain
validation of the generator model (order 𝑁 = 9) against exact machine equations.
Bottom panel: the time domain validation of the model against the current magnitude
reference output.
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PMU. To apply this noise, we utilized the procedure outlined in Algorithm 7, where
𝜂(𝑡) represents an AWG noise vector. In this algorithm, an SNR is first specified in
terms of magnitude (V, I) signals3, and the proper amount of noise is then added.
Next, noise with an appropriate standard deviation is applied to the phase signals
(𝜃, 𝜑), such that the total vector error (TVE) in the complex plane would be a cir-
cular cloud. In other words, an “equivalent” amount of noise is applied to both the
magnitude and phase data, relative to the specified SNR value.

Top and middle panels of Fig. 4-7 report the frequency- and time-domain fitting
performance of a RTVF model of order 𝑁 = 7 obtained for SNR = 32dB. The corre-
sponding noise-corrupted voltage magnitude signals are depicted in the bottom panel.
Compared to the performance in the noise-free setting (Fig. 4-6), these results show
that the frequency-domain model accuracy is still quite acceptable, and that the accu-
racy in the time domain seems to be not affected by the presence of noise. Therefore,
we conclude that the time prediction capabilities of RTVF models extracted from
noisy signals are potentially adequate for power system applications.

4.3 The stochastic-RTVF Scheme

In this section, we pose an extension of the RTVF procedure which is suitable for
performing real-time predictive modeling of stochastically forced dynamical systems.
This new procedure is termed stochastic-RTVF (i.e. sRTVF), and brief test results
are presented at the end of the section to showcase its feasibility.

To derive the sRTVF procedure, we consider the practical problem of using vector
fitting to identify the dynamics of a system whose output behavior is a function of
two components: (i) observable inputs, and (ii) unobservable stochastic inputs. For
example, consider the closed loop generator system in Fig. 4-8. Internally, there
exists some unobservable, stochastic noise process 𝑛(𝑡, 𝜉) which is “corrupting” the
observed (i.e. measured) dynamics at the terminal of the machine. A blind application
of RTVF, with inputs V(𝑡), 𝜃(𝑡) and outputs I(𝑡), 𝜑(𝑡), will identify not only the
dynamics of the machine, but also the effects of the noise. This is problematic, since
most predictive modeling strategies generally seek to identify physical, deterministic
dynamics and are unconcerned with the behavior and effects of such noise. This sort of
situation is a commonly acknowledged roadblock when it comes to real-time modeling
of aggregate load dynamics (e.g. due to random internal switching behavior).

3Because phase angles drift aggressively, faithfully defining their “signal strength” for noise ap-
plication purposes is not a straightforward procedure.
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Figure 4-7: Generator model training from noisy data (SNR = 32). Top panel: fre-
quency responses. Middle panel: small signal current magnitude. Bottom panel:
noise-corrupted input training signals (samples from a cloud of 𝑅 = 100 different
realizations depicted with a shade of grey).
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Figure 4-8: Generator System with Observable Stochastic Input

4.3.1 Stochastic Process Characterization

As with any stochastic formulation, we derive the sRTVF under a series of mod-
eling assumptions about the nature of the underlying stochasticity [174]. In doing
so, we consider a Wise Sense Stationary (WSS) stochastic processes 𝑛(𝑡, 𝜉), where
E𝑡{𝑛(𝑡, 𝜉)} = 0. That is, the expected value of the process at any given time has 0
mean. If this is a white noise process, then the associated autocorrelation function
(ACF) 𝑅𝑛,𝑛(𝜏) takes the familiar form

𝑅𝑛,𝑛(𝜏) = E {𝑛(𝑡 + 𝜏, 𝜉)𝑛(𝑡, 𝜉)} = 𝜎2𝛿𝑡,𝑡+𝜏 . (4.57)

In other words, 𝑅𝑛,𝑛(𝜏 ̸= 0) = 0. If 𝑛(𝑡, 𝜉) is used to represent the unobservable
stochastic input which we are considering, the restriction that it is fully white is
overly restrictive in most practical applications. Therefore, we offer the following
definition which effectively relaxes the pure “white” noise assumption.

Definition 12. A WSS stochastic process 𝑛(𝑡, 𝜉) is referred to as a Relaxed White
Noise Process (RWNP) if, for some sufficiently short time period 𝛾𝑡, the auto-
correlation function satisfies

𝑅𝑛,𝑛(𝜏) = 0, ∀𝜏 ≥ 𝛾𝑡. (4.58)

Therefore, a RWNP may have slight correlation at high frequencies, but is at all
lower frequencies uncorrelated. For example, a pure white noise process 𝑛𝑝(𝑡, 𝜉) is
technically a RWNP with 𝛾𝑡 = 𝜖 ≈ 0. As another example, assume 𝑛𝑓 (𝑡, 𝜉) is the
result of white noise being passed through a low-pass filter with an exact cutoff
frequency of 𝑓𝑠 Hz; it is therefore a “colored” noise process. Accordingly, 𝑛𝑓 (𝑡, 𝜉) is
a RWNP with 𝛾𝑡 = 1/𝑓𝑠. That is, 𝑅𝑛,𝑛(𝜏) = 0, 𝜏 ≥ 1

𝑓𝑠
. Intuitively, low frequency

trends (below 𝑓𝑠) are still uncorrelated in time.
Finally, we note that if some RWNP 𝑛(𝑡, 𝜉) satisfies E{𝑛(𝑡+ 𝜏, 𝜉)𝑛(𝑡, 𝜉)} = 0, 𝜏 ≥

𝛾𝑡, then passing 𝑛(𝑡, 𝜉) through a causal linear filter ℎ(𝑡) will not affect this null ex-
pectation. That is, E{𝑛(𝑡+ 𝜏, 𝜉)𝑛𝑓 (𝑡, 𝜉)} = 0, 𝜏 ≥ 𝛾𝑡, where 𝑛𝑓 (𝑡, 𝜉) =

∫︀∞
−∞ ℎ(𝜏)𝑛(𝑡−
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𝜏, 𝜉)d𝜏 for some causal impulse response function ℎ(𝑡). The associated proof comes
from a direct application of the causality principle.

4.3.2 Formulating the sRTVF Procedure

In this subsection, we offer an explicit, step-by-step formulation of the sRTVF formu-
lation. We accordingly consider a system whose linear (or linearized) dynamics may
be stated by

𝑥̇(𝑡) = A𝑥(𝑡) + B𝑢(𝑡) + B𝑛𝑛(𝑡)

𝑦(𝑡) = C𝑥(𝑡) + D𝑢(𝑡) + D𝑛𝑛(𝑡),
(4.59)

which is both LTI and fully analogous to (4.18). In (4.59), though, 𝑛(𝑡) is some
stochastic and unobservable noise process vector. Specifically, we assume4 each in-
dependent vector entry to be a RWNP with some associated 𝛾𝑡. As with the RTVF
formulation, we decompose all signals into the small-signal and initial condition com-
ponents:

𝑢(𝑡) = 𝑈0 + ̃︀𝑢(𝑡),

𝑛(𝑡) = 𝑁0 + ̃︀𝑛(𝑡),

𝑦(𝑡) = 𝑌0 + ̃︀𝑦(𝑡),

𝑥(𝑡) = 𝑋0 + ̃︀𝑥(𝑡).

(4.60)

We plug these into the dynamic equations:

̃̇︀𝑥(𝑡) = A (𝑋0 + ̃︀𝑥(𝑡)) + B (𝑈0 + ̃︀𝑢(𝑡)) + B𝑛 (𝑁0 + ̃︀𝑛(𝑡)) (4.61)

𝑌0 + ̃︀𝑦(𝑡) = C (𝑋0 + ̃︀𝑥(𝑡)) + D (𝑈0 + ̃︀𝑢(𝑡)) + D𝑛 (𝑁0 + ̃︀𝑛(𝑡)) . (4.62)

At the output, we have constant bias term 𝑌0 = C𝑋0 + D𝑈0 + D𝑛𝑁0, which we
neglect. The small-signal output form is given by

̃︀𝑦(𝑡) = C̃︀𝑥(𝑡) + D̃︀𝑢(𝑡) + D𝑛̃︀𝑛(𝑡), (4.63)

where again, ̃︀𝑛(𝑡) is unobservable. As with the RTVF formulation, we assume the
presence of non-vanishing ICs, such that A𝑋0 +B𝑈0 +B𝑛𝑁0 ̸= 0. By collecting the
constant terms from (4.61), we follow the exact steps (4.27)-(4.32) from the previous

4This assumption is motivated by some physical property of the underlying noise process.
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section to compute the state response

̃︀𝑥(𝑡) =

∫︁ 𝑡

0

𝑒A(𝑡−𝜏) [B̃︀𝑢(𝜏)+B𝑛̃︀𝑛(𝜏)] d𝜏+
[︀
𝑒A𝑡−1

]︀
(𝑋0+A−1B𝑈0 +A−1B𝑛𝑁0)⏟  ⏞  

𝐹0

, (4.64)

where 𝐹0 ̸= 0, since the initial conditions are non-vanishing. Taking the Laplace
transform of (4.64) and (4.63), we have state and output response expressions:

̃︁𝑋(𝑠) = (𝑠1−A)−1[B ̃︀𝑈 (𝑠) + B𝑛
̃︁𝑁 (𝑠)] +

[︀
(𝑠1−A)−1 − 𝑠−11

]︀
𝐹0 (4.65)̃︀𝑌 (𝑠) =

[︀
C(𝑠1−A)−1B + D

]︀ ̃︀𝑈(𝑠) +
[︀
C(𝑠1−A)−1B𝑛 + D𝑛

]︀ ̃︁𝑁 (𝑠)

+ C
[︀
(𝑠1−A)−1 − 𝑠−11

]︀
𝐹0. (4.66)

For clarity, we write (𝑠1−A)−1 as the canonical ratio of an adjoint and a determinant:

(𝑠1−A)−1 =
adj(𝑠1−A)

det(𝑠1−A)
≡ 𝒜(𝑠)

𝒟(𝑠)
. (4.67)

Plugging (4.67) into (4.66), we have

̃︀𝑌 (𝑠) =

[︂
C𝒜(𝑠)B +𝒟(𝑠)D

𝒟(𝑠)

]︂ ̃︀𝑈(𝑠) +

[︂
C𝒜(𝑠)B𝑛 +𝒟(𝑠)D𝑛

𝒟(𝑠)

]︂ ̃︁𝑁 (𝑠)

+

[︂
C (𝒜(𝑠)𝑠−𝒟(𝑠)1)𝐹0

𝑠 · 𝒟(𝑠)

]︂
(4.68)

=

[︂
N(𝑠)

𝒟(𝑠)

]︂ ̃︀𝑈(𝑠) +

[︂
N𝑛(𝑠)

𝒟(𝑠)

]︂ ̃︁𝑁 (𝑠) +

[︂
𝐻(𝑠)

𝑠 · 𝒟(𝑠)

]︂
(4.69)

The key observation here, as with RTVF, is that (i) the input transfer function, (ii)
the noise transfer function, and (iii) the element associated with the non-vanishing
ICs all share a common set of poles (plus an extra 𝑠 = 0 pole in the final instance).
We now apply the common vector fitting “trick”, i.e. introduce a set of basis poles,
and perform a partial fraction expansion of the formulation. In doing so, we assume
there are 𝑃 observable inputs and 𝑃 outputs, but there are 𝑄 unobservable stochastic
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inputs, where in theory, 0 ≤ 𝑄 ≤ ∞. We express the 𝑖th observable output ̃︀𝑌𝑖(𝑠) via

̃︀𝑌𝑖(𝑠) =
𝑃∑︁

𝑗=1

⎡⎢⎢⎢⎣
𝑐
(0)
𝑖𝑗 +

∑︀𝑁
𝑛=1

𝑐
(𝑛)
𝑖𝑗

𝑠− 𝑞𝑛

𝑑0 +
∑︀𝑁

𝑛=1

𝑑𝑛
𝑠− 𝑞𝑛

̃︀𝑈𝑗(𝑠)

⎤⎥⎥⎥⎦+

𝑄∑︁
𝑗=1

⎡⎢⎢⎢⎣
ℎ
(0)
𝑖𝑗 +

∑︀𝑁
𝑛=1

ℎ
(𝑛)
𝑖𝑗

𝑠− 𝑞𝑛

𝑑0 +
∑︀𝑁

𝑛=1

𝑑𝑛
𝑠− 𝑞𝑛

̃︁𝑁𝑗(𝑠)

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
𝑏
(0)
𝑖 +

∑︀𝑁
𝑛=1

𝑏
(𝑛)
𝑖

𝑠− 𝑞𝑛

𝑠 ·
(︂
𝑑0 +

∑︀𝑁
𝑛=1

𝑑𝑛
𝑠− 𝑞𝑛

)︂
⎤⎥⎥⎥⎦. (4.70)

Multiplying through by the common basis poles yields

̃︀𝑌𝑖(𝑠)

(︃
𝑑0 +

𝑁∑︁
𝑛=1

𝑑𝑛
𝑠− 𝑞𝑛

)︃
=

𝑃∑︁
𝑗=1

[︃(︃
𝑐
(0)
𝑖𝑗 +

𝑁∑︁
𝑛=1

𝑐
(𝑛)
𝑖𝑗

𝑠− 𝑞𝑛

)︃ ̃︀𝑈𝑗(𝑠)

]︃

+

𝑄∑︁
𝑗=1

[︃(︃
ℎ
(0)
𝑖𝑗 +

𝑁∑︁
𝑛=1

ℎ
(𝑛)
𝑖𝑗

𝑠− 𝑞𝑛

)︃ ̃︁𝑁𝑗(𝑠)

]︃
+

1

𝑠

[︃
𝑏
(0)
𝑖 +

𝑁∑︁
𝑛=1

𝑏
(𝑛)
𝑖

𝑠− 𝑞𝑛

]︃
. (4.71)

Finally, we take an inverse Laplace transform:

𝑑0 · ̃︀𝑦𝑖(𝑡) +
𝑁∑︁

𝑛=1

𝑑𝑛 · ̃︀𝑦(𝑛)𝑖 (𝑡) =
𝑃∑︁

𝑗=1

[︃
𝑐
(0)
𝑖𝑗 · ̃︀𝑢𝑗(𝑡) +

𝑁∑︁
𝑛=1

𝑐
(𝑛)
𝑖𝑗 · ̃︀𝑢(𝑛)

𝑗 (𝑡)

]︃

+

𝑄∑︁
𝑗=1

[︃
ℎ
(0)
𝑖𝑗 · ̃︀𝑛𝑗(𝑡) +

𝑁∑︁
𝑛=1

ℎ
(𝑛)
𝑖𝑗 · ̃︀𝑛(𝑛)

𝑗 (𝑡)

]︃
+

[︃
𝑏
(0)
𝑖 ·Θ(𝑡) +

𝑁∑︁
𝑛=1

𝑏
(𝑛)
𝑖 Θ(𝑛)(𝑡)

]︃
, (4.72)

where signal 𝑧(𝑛) is the result of a filtering procedure from (4.5), Θ(𝑡) is the Heaviside
unit step function, and Θ𝑛(𝑡) is the filtered step function from (4.41). By noting that
𝑧(0)(𝑡) = 𝑧(𝑡), we may state the time domain expression (4.72) more succinctly:

𝑁∑︁
𝑛=0

𝑑𝑛̃︀𝑦(𝑛)𝑖 (𝑡)=
𝑃∑︁

𝑗=1

[︃
𝑁∑︁

𝑛=0

𝑐
(𝑛)
𝑖𝑗 ̃︀𝑢(𝑛)

𝑗 (𝑡)

]︃
+

𝑄∑︁
𝑗=1

[︃
𝑁∑︁

𝑛=0

ℎ
(𝑛)
𝑖𝑗 ̃︀𝑛(𝑛)

𝑗 (𝑡)

]︃
+

[︃
𝑁∑︁

𝑛=0

𝑏
(𝑛)
𝑖 Θ(𝑛)(𝑡)

]︃
, (4.73)

where 𝑖 ∈ {1, ..., 𝑃}. Using the previous section’s notation, (4.73) may be stated as:

𝜑𝑖𝑑+
𝑃∑︁

𝑗=1

𝜓𝑗𝑐𝑖𝑗 +

𝑄∑︁
𝑗=1

𝜒𝑗ℎ𝑖𝑗 + 𝛽𝑏 ≈ 0, 𝑖 ∈ {1, ..., 𝑃}. (4.74)
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In (4.74), we leverage four data matrices: 𝜑𝑖, 𝜓𝑗 and 𝛽 from (4.44)-(4.46); and

𝜒𝑗 =

⎡⎢⎢⎣
̃︀𝑛𝑗(𝑡1) ̃︀𝑛(1)

𝑗 (𝑡1) · · · ̃︀𝑛(𝑁)
𝑗 (𝑡1)

...
... . . . ...̃︀𝑛𝑗(𝑡𝑘) ̃︀𝑛(1)

𝑗 (𝑡𝐾) · · · ̃︀𝑛(𝑁)
𝑗 (𝑡𝐾)

⎤⎥⎥⎦ . (4.75)

Expression (4.74) also uses four coefficient vectors:

𝑑 =

⎡⎢⎢⎣
𝑑0
...
𝑑𝑁

⎤⎥⎥⎦ , 𝑐𝑖𝑗 =

⎡⎢⎢⎣
𝑐
(0)
𝑖𝑗
...

𝑐
(𝑁)
𝑖𝑗

⎤⎥⎥⎦ , ℎ𝑖𝑗 =

⎡⎢⎢⎣
ℎ
(0)
𝑖𝑗
...

ℎ
(𝑁)
𝑖𝑗

⎤⎥⎥⎦ , 𝑏𝑖 =

⎡⎢⎢⎣
𝑏
(0)
𝑖
...

𝑏
(𝑁)
𝑖

⎤⎥⎥⎦ . (4.76)

We use the proposed notation, along with Δ and 𝑎 from (4.47), to construct system

⎡⎢⎢⎢⎢⎣
Δ 0 · · · 0 𝜑1

0 Δ · · · 0 𝜑2

...
... . . . ...

...
0 0 · · · Δ 𝜑𝑃

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1

𝑎2

...
𝑎𝑃

𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
Λ 0 · · · 0

0 Λ · · · 0
...

... . . . ...
0 0 · · · Λ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑒1

𝑒2
...
𝑒𝑃

⎤⎥⎥⎥⎥⎦ ≈ 0, (4.77)

where Λ = [𝜒1 · · · 𝜒𝑄] and 𝑒𝑖 =
[︁
ℎ𝑇

𝑖1 · · · ℎ𝑇
𝑖𝑄

]︁𝑇
, 𝑖 ∈ {1, ..., 𝑃}. As a reminder, 𝑃

denotes the number of observable inputs and 𝑄 denotes the number of unobservable
stochastic inputs. We note that (4.77) is fully analogous to (4.48) from the RTVF
formulation, except with the addition of noise terms (contained in Λ).

At this point, we digress slightly and rewrite the data “matrices” as general func-
tions of time. That is,

𝜑𝑖(𝑡) = −
[︁̃︀𝑦𝑖(𝑡) ̃︀𝑦(1)𝑖 (𝑡) · · · ̃︀𝑦(𝑁)

𝑖 (𝑡)
]︁

(4.78)

𝜓𝑗(𝑡) =
[︁̃︀𝑢𝑗(𝑡) ̃︀𝑢(1)

𝑗 (𝑡) · · · ̃︀𝑢(𝑁)
𝑗 (𝑡)

]︁
(4.79)

𝜒𝑗(𝑡) =
[︁̃︀𝑛𝑗(𝑡) ̃︀𝑛(1)

𝑗 (𝑡) · · · ̃︀𝑛(𝑁)
𝑗 (𝑡)

]︁
(4.80)

𝛽(𝑡) =
[︁
1 Θ(1)(𝑡) · · · Θ(𝑁)(𝑡)

]︁
(4.81)
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We do the same for the “big” data matrices:

Δ(𝑡) =
[︁
𝜓1(𝑡) · · · 𝜓𝑃 (𝑡) 𝛽(𝑡)

]︁
(4.82)

Λ(𝑡) =
[︁
𝜒1(𝑡) · · · 𝜒𝑄(𝑡)

]︁
. (4.83)

We apply these changes to (4.77), which is now, effectively, transformed into an
underdetermined system of equations (for any single time realization 𝑡 = 𝑡0):

⎡⎢⎢⎢⎢⎣
Δ(𝑡) 0 · · · 0 𝜑1(𝑡)

0 Δ(𝑡) · · · 0 𝜑2(𝑡)
...

... . . . ...
...

0 0 · · · Δ(𝑡) 𝜑𝑃 (𝑡)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1

𝑎2

...
𝑎𝑃

𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
Λ(𝑡) 0 · · · 0

0 Λ(𝑡) · · · 0
...

... . . . ...
0 0 · · · Λ(𝑡)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑒1

𝑒2
...
𝑒𝑃

⎤⎥⎥⎥⎥⎦≈0. (4.84)

We define a column vector of output functions similarly:

𝑦(𝑡) = [ 𝑦1(𝑡) 𝑦2(𝑡) · · · 𝑦𝑃 (𝑡) ]𝑇 . (4.85)

Next, we shift this sequence backwards in time by some 𝛿𝑡, and multiply through
using a Hadamard product, and take the expected value of each row:

E

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝑦(𝑡− 𝛿𝑡)⊙

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣
Δ(𝑡) 0 · · · 0 𝜑1(𝑡)

0 Δ(𝑡) · · · 0 𝜑2(𝑡)
...

... . . . ...
...

0 0 · · · Δ(𝑡) 𝜑𝑃 (𝑡)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1

𝑎2

...
𝑎𝑃

𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
Λ(𝑡) 0 · · · 0

0 Λ(𝑡) · · · 0
...

... . . . ...
0 0 · · · Λ(𝑡)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑒1

𝑒2
...
𝑒𝑃

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ≈ 0. (4.86)

This simply multiplies the 𝑖th function 𝑦𝑖(𝑡 − 𝛿𝑡) through the 𝑖th row of (4.84) and
takes the expected value. For example, in the first row, E{𝑦1(𝑡− 𝛿𝑡) ·Δ(𝑡)}, E{𝑦1(𝑡−
𝛿𝑡) · 𝜑1(𝑡)}, etc. The correlation between the shifted output 𝑦𝑖 and (i) the filtered
input and Heaviside signals of Δ, (ii) the filtered output of 𝜑, and (iii) the filtered
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noise of Λ are given by

𝑅Δ,𝑦𝑖(𝛿𝑡) = E {𝑦𝑖(𝑡− 𝛿𝑡)Δ(𝑡)} (4.87)

𝑅𝜑𝑖,𝑦𝑖(𝛿𝑡) = E {𝑦𝑖(𝑡− 𝛿𝑡)𝜑𝑖(𝑡)} (4.88)

𝑅Λ,𝑦𝑖(𝛿𝑡) = E {𝑦𝑖(𝑡− 𝛿𝑡)Λ(𝑡)} . (4.89)

When computing the correlation between the output and the filtered noise Λ in (4.89),
we seek to invoke a causality principle: future values of noise cannot be correlated
with past values of the output. Since the noise process of Λ has been filtered, though,
present values of filtered noise are a function of past values of noise.

In order to cancel out this correlation term, we must shift the output sufficiently
far backwards in time. For example, in the Yule-Walker method, the discrete time
ARMA model of (4.10) writes the output 𝑦[𝑛] as a sum of stochastic inputs 𝑢[𝑛] shifted
backwards in time by up to 𝑀 steps (up to 𝑢[𝑛−𝑀 ]). Therefore, when simplifying the
correlation relation from (4.11) to (4.12), the correlating output sequence is shifted
backwards to 𝑦[𝑛− 𝑘], 𝑘 > 𝑀 .

In the continuous time relation of (4.84), the system is assumed stable, and so
all filtering effects exponentially decay as 𝑡 → ∞. Therefore, in the limit, the
correlation between the filtered noise sequence and the shifted output 𝑅Λ,𝑦𝑖(𝛿𝑡) =

E {𝑦𝑖(𝑡− 𝛿𝑡)Λ(𝑡)} will decay to 0:

lim
𝛿𝑡→∞

𝑅Λ,𝑦𝑖(𝛿𝑡) = 0. (4.90)

Practically speaking, though, the effects of the noise will decay much sooner than
𝛿𝑡 = ∞. If the slowest pole in the system has a time constant of 𝜏𝑠, then the noise
effects will decay to less than 1% of their initially contributing influence after just
5𝜏𝑠. Therefore, we enforce the following approximating heuristic:

𝑅Λ,𝑦𝑖(𝛿𝑡) ≈ 0, 𝛿𝑡 ≥ 𝜂𝜏𝑠, (4.91)

where time constant 𝜏𝑠 is associated with the slowest pole, and 𝜂 controls the amount
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of noise decay which is desired. Due to (4.91), relation (4.86) simplifies to

⎡⎢⎢⎢⎢⎣
𝑅Δ,𝑦1(𝛿𝑡) 0 · · · 0 𝑅𝜑1,𝑦1(𝛿𝑡)

0 𝑅Δ,𝑦2(𝛿𝑡) · · · 0 𝑅𝜑2,𝑦2(𝛿𝑡)
...

... . . . ...
...

0 0 · · · 𝑅Δ,𝑦𝑃 (𝛿𝑡) 𝑅𝜑𝑃 ,𝑦𝑃 (𝛿𝑡)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1

𝑎2

...
𝑎𝑃

𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≈ 0, 𝛿𝑡 ≥ 𝜂𝜏𝑠. (4.92)

Assuming the correlation time shift is larger than 𝜂𝜏𝑠, the noise terms vanish entirely.
What is truly useful is that the expectation operator kills off all of the noise terms. In
formulating this procedure, we assumed there were 𝑄 of these noise injections, where
0 ≤ 𝑄 ≤ ∞. Thus, we make no assumption about how many noise terms there are,
or how they enter into the state space model. We simply assume their present values
are uncorrelated with previous values of the output.

As written, we note that (4.92) evaluated for a single value of 𝛿𝑡 is severely under-
determined. Thus, we need to evaluate the expression for many values of 𝛿𝑡 ≥ 𝜂𝜏𝑠.
In order to make the formulation similar to the canonical RTVF formulation, we
define tall, skinny vectors 𝑅̂Δ,𝑦𝑖 and 𝑅̂𝜑𝑖,𝑦𝑖 which are simply the evaluation of the
auto/cross-correlation functions for a variety of time shifts:

𝑅̂Δ,𝑦𝑖 =

⎡⎢⎢⎢⎢⎣
𝑅Δ,𝑦𝑖(𝛿𝑡 = 𝜂𝜏𝑠 + 𝛾)

𝑅Δ,𝑦𝑖(𝛿𝑡 = 𝜂𝜏𝑠 + 2𝛾)
...

𝑅Δ,𝑦𝑖(𝛿𝑡 = 𝜂𝜏𝑠 +𝒦𝛾)

⎤⎥⎥⎥⎥⎦ , 𝑅̂𝜑𝑖,𝑦𝑖 =

⎡⎢⎢⎢⎢⎣
𝑅𝜑𝑖,𝑦𝑖(𝛿𝑡 = 𝜂𝜏𝑠 + 𝛾)

𝑅𝜑𝑖,𝑦𝑖(𝛿𝑡 = 𝜂𝜏𝑠 + 2𝛾)
...

𝑅𝜑𝑖,𝑦𝑖(𝛿𝑡 = 𝜂𝜏𝑠 +𝒦𝛾)

⎤⎥⎥⎥⎥⎦ . (4.93)

We note that constant 𝒦, seen in the bottom rows of (4.93), serves a similar function
to the value 𝐾 in RTVF from (4.44)-(4.46), as they both quantify the number of data
points used in constructing the data matrices. While 𝐾 specifies the number of data
points pulled from the filtered signals, 𝒦 specifies the number of times we evaluate
the correlation function for different time shifts 𝛾. Inserting (4.93) into (4.92) yields
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Figure 4-9: Shown is the pole convergence procedure associated with sRTVF. In this
figure, 𝑞 = [𝑞1, . . . , 𝑞𝑁 ]𝑇 is the vector of poles which becomes increasingly refined
as the procedure iterates. The green box performs the cross- and auto-correlation
calculations from (4.87)-(4.88).

the following linear system:

⎡⎢⎢⎢⎢⎣
𝑅̂Δ,𝑦1 0 · · · 0 𝑅̂𝜑1,𝑦1

0 𝑅̂Δ,𝑦2 · · · 0 𝑅̂𝜑2,𝑦2
...

... . . . ...
...

0 0 · · · 𝑅̂Δ,𝑦𝑃 𝑅̂𝜑𝑃 ,𝑦𝑃

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1

𝑎2

...
𝑎𝑃

𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0𝑣, (4.94)

which can be solved via conventional overdetermined least squares methods.

Computing the Final Residues

Once the sRTVF algorithm has converged, the final step is to compute the model
residues (i.e. zeros). At convergences, 𝒟(𝑠) = 1, so there is no filtering needed of the
output signals. Therefore Δ𝑎𝑖 + 𝜑𝑖𝑑 + Λ𝑒1 ≈ 0 simplifies down to Δ𝑎𝑖 + 𝑦𝑖(𝑡) +

Λ𝑒1 ≈ 0. To eliminate the noise terms, we once again apply the correlation trick,
i.e. E {𝑦𝑖(𝑡− 𝛿𝑡) · (Δ𝑎𝑖 + 𝑦𝑖(𝑡) + Λ𝑒1)} ≈ 0. Distributing out the expected value
operator yields

E {𝑦𝑖(𝑡− 𝛿𝑡) ·Δ𝑎𝑖}+E {𝑦𝑖(𝑡− 𝛿𝑡) · 𝑦𝑖(𝑡)}+
���

���
���

��:0

E {𝑦𝑖(𝑡− 𝛿𝑡) ·Λ𝑒1} ≈ 0, 𝛿𝑡 ≥ 𝜂𝜏𝑠. (4.95)

Therefore, the final linear system which needs to be solved is 𝑅̂Δ,𝑦𝑖𝑎𝑖 = −𝑅̂𝑦𝑖,𝑦𝑖 . Fig.
4-9 graphically portrays the iterative scheme associated with the sRTVF procedure.
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Figure 4-10: Shown are the true poles 𝑝 of the 10th order synthetic system. Also
shown are the surrogate poles identified by the sRTVF procedure.

Figure 4-11: Shown are both of the inputs concurrently applied to the synthetic
system. Only the observable blue curve is used by the vector fitting algorithm.

4.3.3 Illustrative Test Results

In order to showcase the feasibility of the sRTVF approach, we present an illustrative
test result on a synthetic, 10th order linear system with one observable input, one
unobservable stochastic input, and one observable output. Therefore, from a physical
point of view, this is a MISO system, but from a modeling perspective, this is a SISO
system (since one of the inputs is unobservable and not incorporated). The true,
physical poles of this system are plotted in Fig. 4-10.

In running the sRTVF procedure, we sought to identify an 𝑁 = 5th order surrogate
model of the system dynamics. After simulating with the observable and unobservable
input signals shown in Fig. 4-11, the sRTVF procedure was applied with 𝒦 = 500

evaluations of the correlations functions (see (4.93)). The time shift correlation pa-
rameter 𝛾 from (4.93) was simply set equal to the inverse of the sampling frequency.
The surrogate poles identified by sRTVF are shown in Fig. 4-10. The poles with the
lowest damping ratio (i.e. closest to the j𝜔 axis) are identified almost exactly. While
the fitting is not perfect, the resulting surrogate model shows excellent time domain
predictive modeling capabilities, as showcased by Fig. 4-12.

Finally, Fig. 4-13 compares the magnitude response of the true FRF with that of
the identified surrogate model. At low frequencies (i.e. below 1 Hz), the surrogate
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Time (s)

Figure 4-12: The blue curve represents the data measured at the output terminal of
the system. The dashed red curve was generated by feeding the measured input data
into the identified sRTVF model and simulating forward in time. Clearly, there is
a high degree of agreement between the measured output and the predicted output
data.

Figure 4-13: Shown is a comparison between the true 10th order FRF and the surro-
gate 5th order FRF, as identified by the sRTVF procedure.

model shows a high degree of accuracy.
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Chapter 5

Accelerating Probabilistic Steady
State Operational Analysis of
Electrical Distribution Networks

In this chapter, we speed up the probabilistic analysis of steady state power flow
models in distribution grids. In the first section, we provide the mathematical back-
ground which will be necessary for solving the problems considered in this chapter.
The second section of this chapter will address the probabilistic power flow problem,
while the third section will address the probabilistic state estimation problem.

5.1 Mathematical Background

This section will offer power flow and state estimation methodologies suitable for
single phase networks. Later in this chapter, these methodologies will be extended to
include three-phase networks.

Remark 4. Throughout this thesis, the notation A−1𝑏 (where A is an invertible
matrix and 𝑏 is a suitably sized vector) should always be interpreted as a “linear
system solve” of system A𝑥 = 𝑏 for some vector 𝑥 (as opposed to performing the
computation of matrix inverse A−1, followed by a matrix-vector product).

5.1.1 Standard Network Model Statement

In defining a suitable network for the power flow and state estimation problems, we
assume there is one unique bus which represents the distribution network substation
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(i.e. point of common coupling). When defining the model for a single-phase network,
researchers often denote its graph 𝐺(𝒱 , ℰ̄), with edge set ℰ̄ , |ℰ̄ | = 𝑚, vertex set 𝒱 ,
|𝒱| = 𝑛, and signed nodal incidence matrix 𝐸̄ ∈ R𝑚×𝑛.

Remark 5. For notational clarity, when defining variables which include the sub-
station node, an overline will be used. For instance, 𝐸̄ contains all network nodes,
including the substation.

The nodal admittance (“Y-bus”) matrix takes the form

𝑌𝑏 = 𝐸̄𝑇𝑌𝑙𝐸̄ + 𝑌𝑠, (5.1)

where 𝑌𝑙 ∈ C𝑚×𝑚 and 𝑌𝑠 ∈ C𝑛×𝑛 are the diagonal line and shunt admittance matrices,
respectively. In this network, we define V̄𝑒j𝜃 ∈ C𝑛 and Ī𝑒j𝜑̄ ∈ C𝑛 as the nodal voltage
and nodal current injection phasor vectors, respectively, where V̄,𝜃, Ī, 𝜑̄ ∈ R𝑛. These
vectors satisfy Ī𝑒j𝜑̄ = 𝑌𝑏V̄𝑒j𝜃.

5.1.2 The Power Flow Problem

In this network, the deterministic power flow problem seeks to determine the nodal
voltage phasors which satisfy a set of nonlinear power flow equations. In polar form,
the active and reactive power flow equations [69] at node 𝑖 are written as

𝑃𝑖 = V𝑖

∑︁
𝑘∈𝒱

V𝑘 (𝐺𝑖𝑘 cos(𝜃𝑖𝑘) + 𝐵𝑖𝑘 sin(𝜃𝑖𝑘)) (5.2a)

𝑄𝑖 = V𝑖

∑︁
𝑘∈𝒱

V𝑘 (𝐺𝑖𝑘 sin(𝜃𝑖𝑘)−𝐵𝑖𝑘 cos(𝜃𝑖𝑘)) , (5.2b)

where 𝐵𝑖𝑘 = Im{𝑌 (𝑖𝑘)
𝑏 } and 𝐺𝑖𝑘 = Re{𝑌 (𝑖𝑘)

𝑏 } are susceptance and conductance values,
respectively. Nonlinear system (5.2) may be extended to include a full network of
nodes by writing the nodal power flow equations as

S̄(𝑥̄) =

[︃
Re{diag(V̄𝑒j𝜃)(𝑌𝑏V̄𝑒j𝜃)*}
Im{diag(V̄𝑒j𝜃)(𝑌𝑏V̄𝑒j𝜃)*}

]︃
, (5.3)

writing the vector of voltage magnitude and phase angle variables as

𝑥̄ =
[︀
V̄𝑇 , 𝜃𝑇

]︀𝑇 ∈ R2𝑛, (5.4)
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and writing the vector of nodal power injections as

𝑠 =
[︀
𝑃 𝑇 , 𝑄̄𝑇

]︀𝑇 ∈ R2𝑛. (5.5)

The resulting system may be compactly written as

𝑠 = S̄(𝑥̄). (5.6)

Definition 13. A power flow solution is any vector 𝑥̄ satisfying

{𝑥̄ ∈ R2𝑛 | ‖S̄(𝑥̄)− 𝑠‖ < 𝜖}. (5.7)

In practice, a power flow solver attempts to minimize residual function ḡ(𝑥̄) ≡ S̄(𝑥̄)−
𝑠, which codifies the mismatch between the specified and the predicted nodal power
injections. Since power injection is only specified at a subset of nodes (i.e. not the
substation), the residual to be minimized reduces to

g(𝑥) ≡ S(𝑥)− 𝑠. (5.8)

We note that 𝑥 =
[︀
V𝑇 , 𝜃𝑇

]︀𝑇 is equivalent to 𝑥̄, but with the feeder voltage (magni-
tude and phase) deleted. Similarly, S(·) and 𝑠 correspond to the power flow functions
and injections, respectively, at all buses in the network except the feeder bus.

In the probabilistic power flow problem, there is uncertainty in the value of the
loads in 𝑠; this uncertainty is parameterized by some distribution vector 𝜉 ∈ R𝑡 via
𝑠(𝜉), where generally 𝑡≪ 2𝑛, depending on the number of uncertain loads. The PPF
solver thus seeks to map the input distribution on the power injections to an output
distribution on power flow solutions (i.e. voltage profiles) by solving S(𝑥)−𝑠(𝜉) = 0,
as in [167].

5.1.3 Standard Numerical Solution Technique for Power Flow

A power flow solver seeks to minimize the residual (5.8) of the nonlinear power flow
equations. This system represents an equal number of equations and unknowns.
Newton-Raphson iterations are most commonly used to solve this system:

Solve : J(𝑥(𝑖))∆𝑥(𝑖) = −g(𝑥(𝑖)), (5.9)

𝑥(𝑖+1) ← 𝑥(𝑖) + ∆𝑥(𝑖),
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where J(𝑥(𝑖)) is the reduced power flow Jacobian (RPFJ) matrix, which is typically
constructed using the summation of explicit partial derivative terms [69]. In [23],
however, Bolognani and D’́orfler propose a novel Jacobian structure:

J(𝑥(𝑖)) = (⟨diag(I𝑒−j𝜑)⟩+ ⟨diag(V𝑒j𝜃)⟩𝑁⟨𝑌𝑏⟩)𝑅(V𝑒j𝜃). (5.10)

The terms 𝑅(·), 𝑁 , and ⟨·⟩ are given in [23] and contextually demonstrated in (5.11):

⟨diag(I𝑒−j𝜑)⟩ =

[︃
Re{diag(I𝑒−j𝜑} Im{diag(I𝑒−j𝜑)}
−Im{diag(I𝑒−j𝜑)} Re{diag(I𝑒−j𝜑)}

]︃
(5.11a)

⟨diag(V𝑒j𝜃)⟩ =

[︃
Re{diag(V𝑒j𝜃)} −Im{diag(V𝑒j𝜃)}
Im{diag(V𝑒j𝜃)} Re{diag(V𝑒j𝜃)}

]︃
(5.11b)

𝑁⟨𝑌𝑏⟩ =

[︃
𝐸𝑇𝑌 𝑔

𝑙 𝐸 −𝐸𝑇𝑌 𝑏
𝑙 𝐸−𝑌 𝑏

𝑠

−𝐸𝑇𝑌 𝑏
𝑙 𝐸−𝑌 𝑏

𝑠 −𝐸𝑇𝑌 𝑔
𝑙 𝐸

]︃
(5.11c)

𝑅(V𝑒j𝜃) =

[︃
diag(cos(𝜃)) −Im{diag(V𝑒j𝜃)}
diag(sin(𝜃)) Re{diag(V𝑒j𝜃)}

]︃
, (5.11d)

where V𝑒j𝜃, I𝑒j𝜑 are appropriately reduced voltage, current vectors. The diagonal
matrices 𝑌 𝑏

𝑠 = Im{𝑌𝑠}, 𝑌 𝑔
𝑙 = Re{𝑌𝑙}, and 𝑌 𝑏

𝑙 = Im{𝑌𝑙} come from the “reduced”
Y-bus matrix:

𝑌𝑏 = 𝐸𝑇𝑌𝑙𝐸 + 𝑌𝑠. (5.12)

Matrix 𝐸 comes from eliminating the root node column 𝑐1 of the full incidence matrix:
𝐸̄ = [𝑐1𝐸 ].

5.1.4 Additional State Estimation Equations

When solving the state estimation equations, we will consider three types of measure-
ments: power injections, power line flows, and voltage magnitudes. The nodal active
and reactive power injection functions are given by (5.3), although in this subsec-
tion, we assume the slack bus voltage is given, and we will write the reduced power
injection equations as a function of the reduced voltage vector: S(𝑥).

Next, we define the power line flow1 function F(𝑥). On each line, there are two
1The power injection equations (5.2) and (5.3) historically called the “power flow” or “load flow”

equations, even though they solve for power injections. In the state estimation problem, we consider
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potential flow functions: from the “sending” end to the “receiving” end, and vice versa.
Without loss of generality, we assume measurement flow devices are only located on
the sending end of the lines. We thus define flow function

F(𝑥) =

[︃
Re{diag(𝐸̄1V̄𝑒j𝜃)(𝑌𝑙𝐸̄V̄𝑒j𝜃)*}
Im{diag(𝐸̄1V̄𝑒j𝜃)(𝑌𝑙𝐸̄V̄𝑒j𝜃)*}

]︃
, (5.13)

where matrix 𝐸̄1 = (|𝐸̄|+𝐸̄)/2 selects sending end voltages. For completion, we also
define the voltage magnitude function M(𝑥), which simply selects voltage magnitude
coordinates:

M(𝑥) = V. (5.14)

As written, S(𝑥), F(𝑥), M(𝑥) return all (non-reduced) network injections, flows, and
voltage magnitudes. At the physical locations where these quantities are not mea-
sured, the corresponding equations from these functions will be eventually removed.

5.1.5 Power System State Estimation

In the state estimation problem, we seek to construct the unknown state vector 𝑥
from a set of noisy (or incomplete) measurements in order to minimize a residual cost
function. In this paper, we assume there are three types of measurements: voltage
magnitudes, power flows, and power injections.

1. M, |M| = m, is the set of voltage magnitudes which are measured. The associ-
ated magnitude residual function is m𝑖(𝑥), and 𝑚̆𝑖 = V̆𝑖 is the 𝑖th magnitude
measurement.

2. F, |F| = f, is the set of active and reactive power line flows that are measured.
The flow residual function is f𝑖(𝑥) and 𝑓𝑖 is the 𝑖th power flow measurement.

3. S, |S| = s, is the set of active and reactive power injections that are measured.
The associated residual function is s𝑖(𝑥), and 𝑠𝑖 is the 𝑖th injection measurement.

true “flow” measurements. To differentiate between the two, the power flow equations will be typically
referred to as power injections equations, while the flow equations (i.e. (5.13)) will always be referred
to as “power line flow” equations.
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Each residual function takes the form of a predictive function of the state 𝑥 minus a
measurement:

m𝑖(x) = M𝑖(𝑥)− 𝑚̆𝑖, 𝑖 ∈ M (5.15a)

f𝑖(x) = F𝑖(𝑥)− 𝑓𝑖, 𝑖 ∈ F (5.15b)

s𝑖(x) = S𝑖(𝑥)− 𝑠𝑖, 𝑖 ∈ S. (5.15c)

We concatenate these residual functions (5.15) into vector r(𝑥):

r(x) = [m(𝑥)𝑇 , f(𝑥)𝑇 , s(𝑥)𝑇 ]𝑇 . (5.16)

The typical state estimator seeks to minimize the unconstrained function 𝐾(𝑥) over
the field 𝑥:

min
𝑥

𝐾(𝑥) = min
𝑥

1
2
r(𝑥)𝑇Σ−1r(𝑥), (5.17)

where Σ is the diagonal covariance matrix associated with the concatenated measure-
ment vector 𝑟 = [𝑚̆𝑇 , 𝑓𝑇 , 𝑔𝑇 ]𝑇 .

Definition 14. Vector r̆ is referred to as a measurement profile.

Assumption 2. The substation voltage is known and therefore not included as an
unknown variable in the state estimator.

Due to measurement redundancy, the DSSE residual equations (5.16) are typically
cast as an overdetermined set of nonlinear equations [169], i.e., the associated DSSE
problem (5.17) has a unique, generally nonzero solution. This paper targets the situ-
ation proposed in [110], where the DSSE problem is technically overdetermined, but
a subset of the pseudo-measurements are extremely uncertain (with uniform distribu-
tion). Thus, our proposed APSE will sample from this uncertain measurement space
and produce rapid DSSE system solves.

Assumption 3. The DSSE equations (5.16) are overdetermined, and (5.17) has a
unique minimizer, but a subset of the measurements are highly uncertain with uniform
distribution.

Defining 𝑝 ≡ 𝑛− 1, which is the number of unknown complex voltages, Assumptions
2 and 3 necessitate m + f + s > 2𝑝.
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5.1.6 Numerical State Estimation Solution Techniques

In solving the state estimation problem (5.17), the first order optimally condition
of 𝜕𝐾(𝑥)/𝜕𝑥𝑖 = 0, ∀𝑥 must be satisfied. Employing Gauss-Newton, we linearize
r(𝑥0 + ∆𝑥) ≈ r(𝑥0) + Jr∆𝑥, where 𝑥 = 𝑥0 + ∆𝑥 and Jr = 𝜕r(𝑥)

𝜕𝑥
= [J𝑇

m, J𝑇
f , J𝑇

s ]𝑇 .
Approximating,

𝐾(𝑥) ≈ 1
2

(r0+Jr∆𝑥)𝑇 Σ−1 (r0+𝐽r∆𝑥) ≡ 𝐾̃(∆𝑥). (5.18)

Optimality condition 𝜕𝐾̃(∆𝑥)/𝜕∆𝑥 = 0 is satisfied by

G(𝑥0)∆𝑥 = −J𝑇
r Σ

−1r(𝑥0). (5.19)

where G(x0) = J𝑇
r Σ

−1Jr. The associated iterative state estimation solution scheme
becomes

𝑥(𝑘+1) = 𝑥(𝑘) −G(x(𝑘))−1J𝑇
r Σ

−1r(x(𝑘)). (5.20)

Alternative Solution via QR Factorization

In many applications, the “gain” matrix G(𝑥) can be poorly conditioned, so it is desir-
able to avoid solving the associated linear system in (5.20) directly. As an alternative,
we consider the over-determined and weighted linear system of equations

Σ− 1
2Jr∆𝑥 = −Σ− 1

2 r(𝑥0). (5.21)

Factoring Σ− 1
2𝐽r into the product of an orthogonal matrix 𝒬 and upper right trian-

gular matrix ℛ, i.e. 𝒬ℛ = Σ− 1
2𝐽r, the iterative scheme (5.20) updates to

𝑥(𝑘+1) = 𝑥(𝑘) −ℛ−1(𝒬𝑇Σ− 1
2 r(x(𝑘))). (5.22)

In the absence of poorly conditioned numerics, (5.20) and (5.22) take the same step
and should converge to the same solution.

Definition 15. We define the standard iterative algorithm (5.22) as the Gauss-
Newton via QR (GNvQR) solution technique.
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5.1.7 Neumann Series Expansion of a Perturbed Matrix

In this thesis, we make use of the following standard result. Consider linear system

(A + 𝜖D)𝑥 = 𝑏 (5.23)

where A is a constant matrix, 𝜖D is a changing perturbation matrix with some small
scalar 𝜖, and 𝑏 is a changing right hand side. The 𝑘th Neumann series expansion of
the matrix (A + 𝜖D)−1 can be used to approximate the solution 𝑥:

𝑥 ≈
𝑘∑︁

𝑖=0

(−1)𝑖(A−1𝜖D)𝑖A−1𝑏+𝒪(𝜖𝑘+1). (5.24)

The series (5.24) converges when 𝜖 < 1/𝜌(A−1D) [55], where 𝜌(·) is the spectral
radius operator. To efficiently compute (5.24), one can first decompose A into its
LU factors. Then, each instance of A−1 can be implemented with efficient system
solves by using the LU factors in standard forward-elimination and back-substitution
routines. After initializing 𝑧(0) = 𝑥(0) by solving LU𝑥(0) = 𝑏, one can then iterate
until the desired accuracy is reached:

Solve : LU𝑧(𝑖+1) = 𝜖D𝑧(𝑖) (5.25)

𝑥(𝑖+1) ← 𝑥(𝑖)+(−1)𝑖𝑧(𝑖+1).

Remark 6. The complexity of a single iteration is 𝒪(𝑛2) when A and D are dense,
and it is 𝒪(𝑛) when they are sparse.

5.1.8 Projection Based Model Order Reduction

A standard way to further speed up the solution of system (5.23) involves looking for
a solution 𝑥̂ ∈ R𝑞 in a low dimensional subspace. One may represent the solution

𝑥 ≈ V𝑥̂ (5.26)

as a linear combination of columns of an orthonormal projection operator V ∈ R𝑛×𝑞, 𝑞 ≪
𝑛. The approximate solution can be obtained by efficiently solving the reduced system
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generated by a standard Galerkin testing [206]:

(Â + 𝜖D̂)𝑥̂ = 𝑏̂, (5.27)

where Â = V𝑇AV ∈ R𝑞×𝑞, D̂ = V𝑇DV ∈ R𝑞×𝑞 and 𝑏̂ = V𝑇𝑏 ∈ R𝑞. The literature
on projection based model order reduction provides many options for constructing
operator V. Later in this paper, we will modify and make use of some of the techniques
(here combined and summarized in Algorithm 8) and theoretical results in [42] and
in [54] for dynamic update of parameterized reduced order models.

Algorithm 8 Model Order Reduction with Dynamic Update
1: 𝑥← Solve full order system (5.23), e.g. with Neumann (5.25)
2: V← 𝑥/‖𝑥‖, Â← V𝑇AV
3: for each new D and/or 𝑏 do
4: D̂← V𝑇DV, 𝑏̂← V𝑇𝑏
5: 𝑥̂← Solve Reduced System (5.27)
6: if ||(A+ 𝜖D)V𝑥̂− 𝑏|| > tolerance then
7: 𝑥← Solve full order system (5.23)
8: 𝑣 ← 𝑥− VV𝑇𝑥 ◁ remove projection into V
9: V← [V 𝑣/‖𝑣‖] ◁ extend subspace

10: Â←
[︂

Â V𝑇A𝑣
𝑣𝑇AV 𝑣𝑇A𝑣

]︂
◁ update reduced model

5.2 Accelerated Probabilistic Power Flow via Model

Order Reduction and Neumann Expansion

5.2.1 Computationally Efficient Power Flow Solution via Neu-

mann Series Expansion

The primary computational bottleneck in the power flow problem is solving (5.9).
In this subsection, we show how to solve system (5.9) efficiently in 𝒪(𝑛) operations
via Neumann series expansion iterations (5.25). Effectively, this is accomplished by
putting Jacobian (5.10) into framework (5.23). We further propose practical conver-
gence criteria. Finally, we outline the power flow algorithm and offer an extension to
three-phase systems.
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Neumann Series Expansion Applied to Power Flow

We rewrite linear system (5.9) as two sub-systems:

(︀
⟨diag(Ĩ*)⟩+ ⟨diag(Ṽ)⟩𝑁⟨𝐸𝑇𝑌𝑙𝐸 + 𝑌𝑠⟩

)︀
𝑦 = 𝑏 (5.28)

𝑅(Ṽ)∆𝑥 = 𝑦, (5.29)

where, for convenience, 𝑏 = −g(𝑥), Ṽ = V𝑒j𝜃, Ĩ = I𝑒j𝜑.

Remark 7. System (5.29) can be solved in 𝒪(𝑛).

Considering (5.28), we multiply both sides by ⟨diag(Ṽ)⟩−1 to yield

(︀
𝑁⟨𝐸𝑇𝑌𝑙𝐸 + 𝑌𝑠⟩⏟  ⏞  

ℒ𝒰

+⟨diag(Ṽ)⟩−1⟨diag(Ĩ*)⟩⏟  ⏞  
𝒟

)︀
𝑦 = ⟨diag(Ṽ)⟩−1𝑏⏟  ⏞  

𝑏

. (5.30)

Remark 8. Matrix 𝑁⟨𝐸𝑇𝑌𝑙𝐸 + 𝑌𝑠⟩ will always be symmetric in a per-unitized net-
work. Therefore, we perform an 𝐿𝐷𝐿𝑇 decomposition, and assign ℒ = 𝐿 and
𝒰 = 𝐷𝐿𝑇 . There might also be orthogonal permutation matrix 𝒫, such that

𝒫𝑇 (𝑁⟨𝐸𝑇𝑌𝑙𝐸 + 𝑌𝑠⟩)𝒫 = ℒ𝒰 . (5.31)

Remark 9. Both 𝒟 and 𝑏 in (5.30) can be computed in 𝒪(𝑛).

In summary, in 𝒪(𝑛) operations, we can express (5.9) as

(ℒ𝒰 +𝒟)𝑦 = 𝑏, (5.32)

via (5.30), where ℒ, 𝒰 are lower and upper triangular matrices respectively. Since
the ℒ𝒰 factors are functions of network admittance parameters and topology, their
values are constant at each iteration. When considering the most efficient way to
solve (5.32), we note that matrix 𝒟 is composed of load currents scaled by nodal
voltages. In a distribution network, these are typically very small compared to the
ℒ𝒰 matrix elements. We therefore consider 𝒟 as a perturbation of matrix ℒ𝒰 , and
we apply the Neumann series iteration (5.25).

Practical Neumann Series Convergence Criteria

To justify this Neumann series application, the following theorem presents practical
convergence condition (5.33). This theorem deals with complex, rather than real,
coordinates. Accordingly, we define 𝒟𝑐 = diag(Ṽ)−1diag(Ĩ*) and ℒ𝑐𝒰𝑐 = 𝐸𝑇𝑌𝑙𝐸.
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Theorem 6. Matrix inverse (ℒ𝑐𝒰𝑐+𝒟𝑐)
−1 can be approximated by a Neumann series

iteration, as in (5.25), if

𝜌(𝐸𝑇𝑌𝑙𝐸) > max{|Ĩ|}. (5.33)

Proof. For (𝒟𝑐+ℒ𝑐𝒰𝑐)−1 to be approximated by a Neumann series, then 𝜌((ℒ𝑐𝒰𝑐)−1𝒟𝑐) <
1 must hold. Expanding,

𝜌((ℒ𝑐𝒰𝑐)−1𝒟𝑐) = 𝜌((𝐸𝑇𝑌𝑙𝐸)−1diag(Ṽ)−1diag(Ĩ*)) (5.34a)

≤ 𝜌((𝐸𝑇𝑌𝑙𝐸)−1)𝜌(diag(Ĩ*)) (5.34b)

=
max{|Ĩ|}
𝜌(𝐸𝑇𝑌𝑙𝐸)

, (5.34c)

where 𝜌(diag(Ṽ)−1) ≈ 1 is assumed due to per-unitization.

If the largest load current magnitude is safely below 𝜌(𝐸𝑇𝑌𝑙𝐸), then the Neumann
series will converge. Since load currents are typically less than 1 p.u. and network
admittance values are typically much larger, this condition is usually satisfied by a
large margin. For example, in the IEEE 123-bus network [161], ‖ℒ𝒰‖/‖𝒟‖ ≈ 4×104.

Solving Power Flow via Neumann Expansion

The full power flow procedure, outlined in Algorithm 9, iterates until Newton con-
verges according to some tolerance on the residual injection at each bus. This solver
is termed the Neumann Series Based Power Flow (NSBPF) solver. At several points,
this power flow solver calls Algorithm 10, which solves the pre-factored network ad-
mittance matrix using forward-elimination and backward-substitution.

Extension to Unbalanced Three-Phase Networks

The numerical routine proposed in Algorithm 9 can be readily extended to an un-
balanced, three-phase network. In these networks, each element must be described
by [︃

Ĩ𝑖𝑗

Ĩ𝑗𝑖

]︃
=

[︃
Y𝑖𝑖 Y𝑗𝑖

Y𝑖𝑗 Y𝑗𝑗

]︃[︃
Ṽ𝑖

Ṽ𝑗

]︃
, (5.35)

where the stated admittance matrix is 6 × 6 and Ĩ𝑖𝑗, Ṽ𝑖 ∈ C3×1. This formulation
assumes properly grounded neutral phases which are eliminated via Kron reduction.
If one or more of the phases do not exist (i.e. “disjoint” phase extensions), then
the corresponding columns of the admittance matrix (5.35) are removed. The three
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Algorithm 9 Neumann Series Based Power Flow (NSBPF)
Require: Matrix factors ℒ, 𝒰 , 𝒫 from (5.31); specified power injections 𝑠; initial voltage
guess 𝑥0; reduced power flow function S(·)
Ensure: Solution 𝑥 satisfies S(𝑥) ≈ 𝑠
1: function 𝑥←NSBPF(ℒ,𝒰 ,𝒫,S,𝑥0)
2: 𝑘 ← 0
3: 𝑏← 𝑠− S(𝑥𝑘)
4: while ‖𝑏‖∞ > tolerance 𝜖𝑁 do
5: Construct ⟨diag(Ṽ)⟩ and ⟨diag(Ĩ*)⟩ from 𝑥𝑘

6: 𝑏← Solve: ⟨diag(Ṽ)⟩𝑏 = 𝑏
7: 𝒟 ← Solve: ⟨diag(Ṽ)⟩𝒟 = ⟨diag(Ĩ*)⟩
8: 𝑖← 0
9: 𝑦(0) = z← FEBS(ℒ,𝒰 ,𝒫, 𝑏)

10: for desired number of NS iterations do
11: 𝑖← 𝑖+ 1
12: z← FEBS(ℒ,𝒰 ,𝒫,𝒟z)
13: 𝑦(𝑖+1) ← 𝑦(𝑖) + (−1)𝑖z

end
14: Δ𝑥𝑘 ← Solve: 𝑅(Ṽ)Δ𝑥𝑘 = 𝑦
15: 𝑥𝑘+1 ← 𝑥𝑘 −Δ𝑥𝑘

16: 𝑏← 𝑠− S(𝑥𝑘)
17: 𝑘 ← 𝑘 + 1

end
18: return 𝑥

Algorithm 10 Forward-Elimination Back-Substitution (FEBS)
Require: Matrix factors ℒ, 𝒰 , 𝒫; RHS vector 𝑏
Ensure: Returned 𝑥 satisfies 𝒫ℒ𝒰𝒫𝑇𝑥 = 𝑏

1: function 𝑥←FEBS(ℒ,𝒰 ,𝒫, 𝑏)
2: z← solve (ℒz = 𝒫𝑇𝑏) with Forward-Elimination
3: 𝑦 ← solve (𝒰𝑦 = z) with Back-Substitution
4: 𝑥← 𝒫𝑦
5: return 𝑥
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phase nodal admittance matrix associated with the full network is constructed by
properly placing and summing the individual primitive admittance matrices. This
nodal admittance matrix, including shunts, is written as Y𝑏. For more details on
formulating the three-phase admittance matrix, see [52]. Using this matrix, the three-
phase reduced power flow Jacobian can be directly constructed as

J =
(︀
⟨diag(̃I*)⟩+ ⟨diag(Ṽ)⟩N⟨Y𝑏⟩

)︀
𝑅(Ṽ). (5.36)

Any undefined terms can be inferred from (5.10), with the guiding assumption that
both current and voltage vectors are concatenated 𝑛-phase vectors, where 𝑛 = 1, 2, 3

depending on the nature of the disjoint phase extensions.

Remark 10. The admittance N⟨Y𝑏⟩ from (5.36) will necessarily be symmetric. Ac-
cordingly, the LDL decomposition proposed in Remark 8 will be a valid factorization
for this matrix.

Other three-phase structures can be constructed analogously. Using these updated
expressions, the solution to the three-phase power flow can proceed as outlined in
Alg. 9.

5.2.2 Reduced Order Modeling of the Nonlinear Power Flow

for Probabilistic Power Flow

In this subsection, we first motivate the low-rank nature of power flow solutions in
the PPF problem. Next, we leverage a projection subspace in order to perform model
order reduction on the full power flow problem, and we show how Newton iterations
can be used to solve the associated over-determined nonlinear system. Finally, we
combine our proposed model order reduction method with our Neumann series based
power flow algorithm in order to quickly solve for PPF solutions.

Model Order Reduction of the Power Flow Problem

A PPF solver considers the probable loading levels of a distribution network over
some probabilistic horizon. The corresponding set of operating points is inherently
low-rank. Anchored by tightly regulated feeder voltages, the network voltage profile
𝑥 ∈ R𝑛 typically lives in a fairly low-dimensional subspace characterized by V∈R𝑛×𝑞

from (5.26). When V is populated with a sufficient number of appropriately chosen
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dominant basis vectors, the low order vector 𝑥̂ can represent the full order state with
a high degree of accuracy.

To exploit the usefulness of subspace V beyond the Galerkin projection of (5.27),
we note that the power flow equations become quadratic when written in Cartesian
coordinates 𝑉r = Re{V𝑒j𝜃}, 𝑉i = Im{V𝑒j𝜃}. We can therefore express the reduced
residual function (5.8) as an exact second order Taylor series expansion. Writing the
reduced voltage vector in Cartesian coordinates as 𝑥𝑐,

g(𝛿𝑥𝑐) = S(𝑥𝑐0) + J𝑐0𝛿𝑥𝑐 + 1
2
H𝑐 (𝛿𝑥𝑐 ⊗ 𝛿𝑥𝑐)− 𝑠, (5.37)

where 𝛿𝑥𝑐 = 𝑥𝑐 − 𝑥𝑐0 is a perturbation from some nominal operating point 𝑥𝑐0, and
J𝑐0 ≡ J𝑐(𝑥𝑐0) and H𝑐 are Jacobian and Hessian matrices, respectively. The expansion
of the Cartesian coordinate power flow equations has a Jacobian which is equal to
(5.10), but with the elimination of the polar-to-Cartesian conversion matrix 𝑅(·):

J𝑐 = (⟨diag(Ĩr − jĨi)⟩+ ⟨diag(Ṽr + jṼi)⟩𝑁⟨𝑌𝑏⟩). (5.38)

Notably, (5.38) is a linear function of Cartesian voltage coordinates, so the Hessian
H𝑐 ∈ R𝑛×𝑛2 is constant. With 𝑖th unit vector e𝑖,

H𝑐 =
[︁

𝑑J𝑐

𝑑Ṽr,1
· · · 𝑑J𝑐

𝑑Ṽr,𝑛

𝑑J𝑐

𝑑Ṽi,1
· · · 𝑑J𝑐

𝑑Ṽi,𝑛

]︁
(5.39)

𝑑J𝑐

𝑑Ṽr,𝑖
= ⟨diag(𝑌 *

𝑏 e𝑖)⟩+⟨diag(e𝑖)⟩𝑁⟨𝑌𝑏⟩ (5.40)

𝑑J𝑐

𝑑Ṽi,𝑖
= ⟨diag(−j𝑌 *

𝑏 e𝑖)⟩+⟨diag(je𝑖)⟩𝑁⟨𝑌𝑏⟩. (5.41)

Leveraging 𝑥𝑐 ≈ V𝑥̂𝑐, as in (5.26), we note that V𝑥̂𝑐 = V𝑥̂𝑐0 + V𝛿𝑥̂𝑐. Substituting
V𝛿𝑥̂𝑐 ≈ 𝛿𝑥𝑐 into (5.37),

g(V𝛿𝑥̂𝑐) = S0 + J𝑐0V𝛿𝑥̂𝑐+
1
2
H𝑐(V⊗V)(𝛿𝑥̂𝑐⊗𝛿𝑥̂𝑐)−𝑠, (5.42)

where S0 = S(𝑥0) and Kronecker products in (5.42) have been separated [48]. Min-
imizing residual g(V𝛿𝑥̂𝑐) in a least squares sense represents the minimization of an
overdetermined nonlinear system. The Newton-like algorithm for minimizing the least
squares problem ‖g(V𝛿𝑥̂𝑐)‖22 can be derived by keeping the constant + linear terms of
the expansion (5.42) and then solving for iterative values of 𝛿𝑥̂𝑐 via Moore-Penrose:

𝛿𝑥̂(𝑖+1)
𝑐 = 𝛿𝑥̂(𝑖)

𝑐 − [(J𝑐0V)𝑇J𝑐0V]−1(J𝑐V)𝑇g(V𝛿𝑥̂(𝑖)
𝑐 ). (5.43)
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In solving (5.43), we notice that whenever g(V𝛿𝑥̂(𝑖)
𝑐 ) is evaluated, it is left multiplied

by (J𝑐0V)𝑇 . We therefore define Ĵ = J𝑐0V and then multiply (5.42) through by Ĵ𝑇 :

ĝ(𝛿𝑥̂𝑐) = Ŝ0 + Ĝ𝛿𝑥̂𝑐 + 1
2
Ĥ(𝛿𝑥̂𝑐 ⊗ 𝛿𝑥̂𝑐)− 𝑠 (5.44)

where ĝ = Ĵ𝑇g, Ŝ0 = Ĵ𝑇S0, Ĝ = Ĵ𝑇 Ĵ, Ĥ = Ĵ𝑇H𝑐(V⊗V), and 𝑠 = Ĵ𝑇𝑠. Importantly,
(5.44) is a square system, i.e., it has 𝑞 equations and 𝑞 variables in 𝛿𝑥̂𝑐. Applying
a Newton-like (i.e. neglecting Hessian contributions) method to (5.44) yields the
iterative routine

𝛿𝑥̂(𝑖+1)
𝑐 = 𝛿𝑥̂(𝑖)

𝑐 − Ĝ−1ĝ(𝛿𝑥̂(𝑖)
𝑐 ), (5.45)

where, again, Ĝ is the result of a modified Galerkin projection: Ĝ = (J𝑐0V)𝑇J𝑐0V.
Notably, Ĵ, Ĝ, and Ĥ are constant matrices and do not need to be updated at each
step 𝛿𝑥̂

(𝑖)
𝑐 .

Remark 11. Because (5.44) is a determined system, the residual ĝ can be driven to
0. This residual, though, is merely a projection of the true residual g of (5.37) into
the low-rank space (J𝑐V)𝑇 . Therefore, ĝ = 0 does not imply g = 0.

Once converged, 𝛿𝑥̂(𝑖)
𝑐 will be equal to the reduced state deviation which is the

least squares minimizer of (5.42). Notably, the reduced residual ĝ(𝛿𝑥̂
(𝑖)
𝑐 ) and the steps

of (5.45) can both be computed very quickly, since the reduced system is extremely
small (𝑞 × 𝑞). A key property of this low-dimensional system is that (5.45) reliably
converges even though Ĝ is not updated between iterations; as will be shown, it is
only updated when the basis 𝑉 dynamically expands. The procedure associated with
the ROM system solve (5.45) is given in Algorithm 11 and is termed the Reduced
Model Solver (RMS).

Algorithm 11 Reduced Model Solver (RMS)

1: function [𝛿𝑥̂𝑐,𝑥]←RMS(V, Ŝ0, Ĝ, Ĥ, 𝑥̂𝑐0, 𝛿𝑥̂
(1)
𝑐 , 𝑠)

2: ĝ← Ŝ0 + Ĝ𝛿𝑥̂
(1)
𝑐 + 1

2Ĥ(𝛿𝑥̂
(1)
𝑐 ⊗ 𝛿𝑥̂

(1)
𝑐 )− 𝑠

3: 𝑖← 1
4: while ‖ĝ‖∞ > tolerance 𝜖𝑁 do
5: 𝛿𝑥̂

(𝑖+1)
𝑐 ← 𝛿𝑥̂

(𝑖)
𝑐 − Ĝ−1ĝ(𝛿𝑥̂

(𝑖)
𝑐 )

6: 𝑖← 𝑖+ 1
7: ĝ← Ŝ0 + Ĝ𝛿𝑥̂

(𝑖)
𝑐 + 1

2Ĥ(𝛿𝑥̂
(𝑖)
𝑐 ⊗ 𝛿𝑥̂

(𝑖)
𝑐 )− 𝑠

end
8: return 𝛿𝑥̂𝑐 ← 𝛿𝑥̂

(𝑖)
𝑐 , 𝑥← Cartesian-to-Polar{V(𝛿𝑥̂𝑐+𝑥̂𝑐0)}
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Failure of convergence of Alg. 11 has not been witnessed by the authors. Such
potential failure, though, would always be detected by the APPF algorithm, as shown
in Fig. 5-1, in which case the full order model will be used to solve the system.

Dynamic Subspace Expansion

The quality of the RMS solution is a function of how effectively the subspace V has
been “filled out”. In order to expand V, we assume we have an emerging sequence of
valid power flow solutions in Cartesian coordinates. We then leverage the dynamic
subspace expansion technique characterized by line 9 in Algorithm 8. In this way, the
basis V is dynamically constructed as an outer loop PPF solver runs. Such dynamic
updating is computationally cheap, and it ensures that V only contains subspace
vectors which are useful for solving a particular PPF problem. Indeed, V growing
too large will slow the iterative scheme (5.45) down considerably. As V grows in
size, though, the quality of the RMS results will improve. The expansion procedure
is outlined in Algorithm 12, which also includes updates of Ĵ, Ĝ, Ĥ, 𝛿𝑥̂𝑐 and Ŝ0.
Notably, the “sort(·)” function ensures that Ĥ is properly ordered, so it correctly
interacts with Kronecker product 𝛿𝑥̂𝑐⊗ 𝛿𝑥̂𝑐 in (5.44). For computational expediency,
we also note that this algorithm tracks H𝐾 , which is effectively the latest update of
H𝑐(V⊗V). The full expansion procedure is termed the Dynamic Subspace Expansion
(DSE). As the subspace V grows in size,

• the operation V ⊗ V becomes exponentially more time intensive (even if previ-
ously computed terms are saved),

• but V← [V 𝑥] adds marginally less important basis terms.

Accordingly, the first elements of 𝛿𝑥̂𝑐 tend to be orders of magnitude larger than the
final elements. Since V ⊗ V is only used in constructing Ĥ, which in-turn is used to
compute the quadratic terms in the residual function ĝ from (5.44), we can curtail
the growth of Ĥ by choosing to only keep the expansions associated with first (𝑛𝑞)

2

quadratic terms of 𝛿𝑥̂𝑐⊗𝛿𝑥̂𝑐. This can be done without reasonably compromising the
quality of (5.44), and it is implemented in line 9 of Alg. 12. The test results section
provides further discussion.

Combining NSBPF, RMS, and DSE for Accelerated PPF

We now propose one coherent routine which incorporates the NSBPF, the RMS, and
the DSE. On the surface, this solver behaves like other sampling-based PPF solves:
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Figure 5-1: Contrasted are the traditional sampling-based Probabilistic Power Flow
(PPF) (top panel), and the Accelerated Probabilistic Power Flow (APPF). In the
APPF, a reduced modeler first attempts to solve power flow. If it fails, the full-order
Neumann series solver is used. If the resulting solution isn’t in the basis V, it is
dynamically added, and the reduced model is updated.

it loops over various sampled load profiles and solves power flow for each one. Such
architecture can be seen in the top panel of Fig. 5-1, where a traditional Newton-
Raphson solver (i.e. (5.9)) is used. Our routine, shown in the bottom panel of Fig.
5-1, first attempts to solve power flow using the RMS. If the resulting residual is too
large, then the inadequate solution is passed to the NSBPF routine so it can find an
adequate one. The resulting solution is then passed to the DSE, and the subspace
V is potentially updated. Further details are given in Algorithm 13, which is termed
the Accelerated Probabilistic Power Flow (APPF).

5.2.3 Test Results

In this section, we present test results which were collected on the IEEE 8500-node
test feeder. To construct this test case, we used OpenDSS [51] to carefully export
the admittance matrix, nominal loading values, transformer tap ratios, transformer
configurations (∆ : Y, Y : Y, split-phase) and base voltage levels of this network to
MATLAB. We then per-unitized the network with a base power of 100kW and base
voltages of 66.5kV, 7.2kV and 120V on the appropriate buses. In our tests, all tap
ratios and switch configurations were assumed fixed. Additionally, the nominal three-
phase feeder voltage was assumed static across all trials. With this per-unitization,
the largest nominal load current was 0.51 pu, meaning (5.34c) was satisfied by many
orders of magnitude.

In testing this network, we chose a subset 𝒮, |𝒮|= 25, of the largest loads in the
8500-node network and assumed an extremely high degree of input variability. Ac-
cordingly, we sampled from IID Gaussian distributions, such that the sampled active
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Algorithm 12 Dynamic Subspace Expansion (DSE)
1: function [V, Ĵ, Ĝ, Ĥ,H𝐾 , 𝛿𝑥̂𝑐, Ŝ0]←DSE(V, Ĵ, Ĝ, Ĥ,H𝐾 , 𝛿𝑥̂𝑐, Ŝ0,S0,𝑥,J𝑐0,H𝑐)
2: 𝑥𝑐 ← Polar to Cartesian{𝑥}
3: 𝑣 ← 𝑥𝑐 − VV𝑇𝑥𝑐

4: if ‖𝑣‖ > tolerance 𝜖𝐵 then
5: 𝛿𝑥̂𝑐 ← [𝛿𝑥̂𝑇

𝑐 ‖𝑣‖]
𝑇

6: 𝑣 ← 𝑣/‖𝑣‖
7: 𝑣𝐽 ← J𝑐0𝑣

8: Ĝ←
[︂
Ĝ Ĵ𝑣𝐽
𝑣𝑇𝐽 Ĵ 𝑣𝑇𝐽 𝑣𝐽

]︂
9: if size{𝛿𝑥̂𝑐} ≤ 𝑛𝑞 then

10: V𝑘 ← sort{𝑣 ⊗ V,𝑣 ⊗ 𝑣}
11: K← H𝑐V𝑘

12: Ĥ← sort

[︂
Ĥ Ĵ𝑇K

𝑣𝑇𝐽 H𝐾 𝑣𝑇𝐽 K

]︂
13: H𝐾 ← sort[H𝐾 H𝑐V𝑘]

end
14: Ŝ0 ← [Ŝ𝑇

0 𝑣
𝑇
𝐽 S0]

𝑇

15: Ĵ← [Ĵ 𝑣𝐽 ]
16: V← [V 𝑣]

end
17: return V, Ĵ, Ĝ, Ĥ,H𝐾 , 𝛿𝑥̂𝑐, Ŝ0

and reactive power were generated via {𝑃,𝑄}(𝑠)𝑖 = {𝑃,𝑄}𝑖(1+𝒩 (𝜎, 0)), 𝑖∈𝒮. In each
case, the loads in 𝒮 were assumed to have distributed energy resource capabilities (i.e.
rooftop PV, battery charging/discharging capabilities, etc.). Accordingly, the stan-
dard deviation in was set to 𝜎 = 1, meaning the loads could potentially switch sign
and become sources in some sampling instances. Since samples were drawn randomly,
this sampling routine is called Simple Random Sampling (SRS) [77]. The sampling
procedure was performed 1000 times for each load, the largest of which vary between
-110kW and +60kW of active power, for example (see Fig. 5-2). The remainder of
the loads were left fixed to one half their nominal values. Next, we documented the
speed-up of the APPF relative to the traditional PPF solver (see top panel of Fig. 5-1)
in the context of SRS. All simulations were performed using MATLAB R2017b on a
Dell XPS laptop, equipped with an Intel i5 CPU @ 2.30GHz and 8 GB of RAM.

Traditional PPF

First, we applied the traditional PPF solver from Fig. 5-1. The Newton stopping
criteria on the power injection residual was set to 𝜖𝑁 = 10−4, i.e. ‖S(𝑥𝑖) − 𝑠𝑖‖∞ <

10−4. Physically, this corresponds to conservation of power being satisfied below 10
Watts at each node in the network. Looping over the 1000 loading configurations,
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Algorithm 13 Accelerated Probabilistic Power Flow (APPF): PPF Using RMS with
DSE via NSBPF
Require: Matrix factors ℒ, 𝒰 , 𝒫 from (5.31); initial voltage solution 𝑥0 of nominal power
injection S0; nominal reduced power flow function S(·); reduced power flow Hessian H𝑐 and
Jacobian J𝑐0 evaluated at 𝑥0, specified power injection profiles 𝑠𝑖 for each 𝑖 = 1, 2, ...,𝑀
Ensure: Each solution 𝑥𝑖 satisfies S(𝑥𝑖) ≈ 𝑠𝑖
1: function [𝑥1,𝑥2, ...,𝑥𝑀 ]←APPF (ℒ,𝒰 ,𝒫, 𝑠,𝑥0,S0,J𝑐0,H𝑐)
2: 𝑥𝑐0 ← Polar-to-Cartesian{𝑥0}
3: 𝑥̂𝑐0 ← ‖𝑥𝑐0‖
4: 𝛿𝑥̂𝑐 ← 0
5: V← 𝑥𝑐0/‖𝑥𝑐0‖
6: Ĵ← J𝑐0V
7: Ŝ0 ← Ĵ𝑇S0

8: Ĝ← Ĵ𝑇 Ĵ
9: H𝐾 ← H𝑐(V⊗ V)

10: Ĥ← Ĵ𝑇H𝐾

11: 𝑖← 1
12: while 𝑖 ≤𝑀 do
13: 𝑠𝑖 ← Ĵ𝑇𝑠𝑖
14: [𝛿𝑥̂𝑐,𝑥𝑖]←RMS(V, Ŝ0, Ĝ, Ĥ, 𝑥̂𝑐0, 𝛿𝑥̂𝑐, 𝑠𝑖)
15: if ‖S(𝑥𝑖)− 𝑠𝑖‖∞ > tolerance 𝜖𝑁 then
16: 𝑥𝑖 ←NSBPF(ℒ,𝒰 ,𝒫, 𝑠𝑖,𝑥𝑖)
17: [V, Ĵ, Ĝ, Ĥ,H𝐾 , 𝛿𝑥̂𝑐, Ŝ0]←DSE(V, Ĵ, Ĝ, Ĥ,H𝐾 , 𝛿𝑥̂𝑐, Ŝ0,S0,𝑥𝑖,J𝑐0,H𝑐)

end
18: 𝑖← 𝑖+ 1

end
19: return 𝑥1,𝑥2, ...,𝑥𝑀
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Figure 5-2: Sampled active and reactive power input distributions (panels (a) and
(b), respectively) for the 25 largest loads in the 8500-node network.

Newton required between 2 and 3 steps to converge for all load configurations except
for the first one, as shown in panel (a) of Fig. 5-5. Ultimately, the full simulation
required ∼190 seconds to run, meaning each power flow lasted about 0.19 seconds.
Sample results from the simulation are shown in Fig. 5-3. These plots show voltage
and current distributions in the network, and they represent some of the ways that
characterizing the probabilistic output from a PPF routine can be useful. The results
generated by the traditional PPF routine, for all practical purposes are identical to
the results generated by the APPF routine in the following subsection, i.e. the data
shown in Fig. 5-3 could be generated by either process.

APPF

In order to run the APPF, three additional tolerances were needed: the RMS con-
vergence tolerance 𝜖𝑁 from Alg. 11, which was set to 𝜖𝑁 = 10−5, the expansion
curtailment constant 𝑛𝑞 from Alg. 12, which was set to 𝑛𝑞 = 37, and the basis ex-
pansion tolerance 𝜖𝐵 from Alg. 12. The choice of 𝜖𝐵 was particularly important: if
set too large, the basis would never fill up and the RMS would perform poorly, but if
set too small, the basis would fill up endlessly and slow the RMS down considerably.
In testing the 8500-node network, we found 𝜖𝐵 = 10−4 to be an effective compromise.

With these tolerances set, the APPF simulation required ∼20 seconds to run.
Relative to the traditional PPF, the APPF ran almost 10x faster. The super-
majority of this time, though, was spent construing matrix Ĥ = Ĵ𝑇H𝑐(V⊗ V), which
occurred as subspace V was being intermittently constructed during the first 60 or
so load profile iterations. Once V was sufficiently filled out, the RMS could solve the
power flow problem without any help from the NSBPF (and without any more basis
expansions). The final 940 load profiles were solved in 2.90 seconds. Relative to the
final 940 solves of the traditional PPF, the APPF ran ∼61x faster. The full timing
breakdown is graphically portrayed in Fig. 5-4.
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Figure 5-3: PPF results from the 8500-node network. Panel (a) shows the range
of output voltages across 1000 trials for each node (sorted for clarity.) Panel (b)
shows a histogram of all 1000× 8531 voltage magnitude points across all nodes, with
an approximated black PDF curve plotted on top. Panel (c) shows a histogram
of the current magnitudes flowing on the line connecting nodes 5724 and 8410; an
approximated black PDF curve is plotted on top.

1  37  60 100 150
10-3

10-2

10-1

100

Figure 5-4: Shown is timing analysis for the traditional Newton-based PPF solver
versus the APPF solver over the first 175 load profiles. Notably, the traditional
PPF solver has a fairly constant solve speed, usually requiring two Newton iterations
(although the locations of three iterations are marked in the upper right). At load
profile 𝑛𝑞 = 37, the APPF stopped building H𝑐, which was becoming very time
intensive. Between load profiles 38 and 60, the NSBPF and RMS worked together to
continue building out the basis V and solving the system. After load profile 60, the
RMS quickly solved the system on its own without the NSBPF, and no more basis
expansion was needed.

221



0

2

4

1 250 500 750 1000
0

2

4

6

Figure 5-5: Panel (a) shows the number of Newton iterations performed by traditional
PPF for each new load profile vs. the number of Newton iterations taken by the
NSBPF solver in the APPF. Panel (b) shows the number of iterations taken by the
RMS inside the APPF.

It is also instructive to consider how many Newton iterations the traditional PPF
and the APPF solvers were required to perform on the full nonlinear system. This
is shown in panel (a) of Fig. 5-5. As the APPF runs and V fills up, the number of
required Newton iterations by NSBPF solver in Alg. 9 drops from 4, to 3, to 2, to 1,
to 0. When the APPF does take a Newton step, though, it is much faster than the
traditional PPF Newton step, due to the Neumann expansion. On average:

• Traditional PPF Newton step time (mean): 0.11 seconds

• APPF Newton step time via NSBPF (mean): 0.02 seconds

Panel (b) of Fig. 5-5 shows the number of iterations, usually 5 or 6, taken by the
RMS as the load profiles are processed. This relatively large number of iterations is
due to the recycling of approximate reduced Jacobian Ĝ. If Ĝ was exactly computed
at each step, fewer iterations would be necessary. Such updating, though, is far more
expensive than adding additional iterations, so we tolerate the high iteration count
in Fig. 5-5.

As the APPF solver ran, the basis V dynamically expanded to include 52 orthonor-
mal columns, giving it an ultimate dimension of (2 · 8531)× 52. As V expanded, the
RMS became increasingly effective at solving the power flow problem without any
help from the NSBPF. This is shown very clearly by Fig. 5-6, which shows how the
RMS output residual decreases as the solver cycles through the load profiles. It is
interesting to note the salient “residual cliff” in panel (a), quite clearly located at
load profile 27. To further explore its significance, we stacked the voltage solution
vectors 𝑥𝑖 (found by traditional PPF) inside data matrix W = [𝑥1, 𝑥2, ...,𝑥1000].
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Figure 5-6: Residual active and reactive power (panels (a) and (b), respectively) at
the 25 perturbed load buses in the 8500-node network after the RMS has converged.
As V expands, the RMS is able to consistently drive the residual at each of these
buses below the stopping criteria 𝜖𝑁 .
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Figure 5-7: Plot of the singular values 𝜎 of matrix W = [𝑥1, 𝑥2, ...,𝑥1000].

We then took the SVD of W, i.e. 𝜎 = svd{W}. The results are shown in Fig.
5-7, which clearly shows a steep drop-off after the 27th largest singular value. This
provides a nice qualitative explanation for the residual cliff in Fig. 5-6: the first 27
columns of subspace V capture the most important features of the voltage profile,
where “important” is quantified by the magnitude of a corresponding singular value.

5.3 Accelerated Probabilistic State Estimation in Dis-

tribution Grids via Model Order Reduction

5.3.1 Model Order Reduction of the State Estimation Prob-

lem

In this section, we apply the model order reduction scheme proposed the previous
section to the probabilistic state estimation problem.
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An Exact Expansion of the State Estimation Equations

We seek to express the residuals (5.15) as exact second order expansions. This can
be achieved for (5.15b)-(5.15c) by simply moving to Cartesian voltage coordinates,
where the power flow and injection functions become quadratic. We write reduced
voltage vector 𝑥 in Cartesian coordinates as

𝑥𝑐 =
[︀
𝑉 𝑇

r , 𝑉 𝑇
i

]︀𝑇
, (5.46)

where 𝑉r = Re{Ṽ} and 𝑉i = Im{Ṽ}. In Cartesian coordinates, the second order
expansion of the voltage magnitude residual function (5.15a), will not be exact, since
the expansion of (𝑉 2

r +𝑉 2
i )

1
2 has infinite terms. Therefore, we choose to update (5.15a)

by taking the difference of the squares:

̃︀m𝑖(𝑥𝑐) = M𝑖(𝑥)2 − 𝑚̆2
𝑖 (5.47a)

= (𝑉 2
r,𝑖 + 𝑉 2

i,𝑖)− V̆2
𝑖 , 𝑖 ∈ M. (5.47b)

The effects of this minor change can be compensated for by altering the associated
weights in covariance matrix Σ.

To form the expansions of (5.15b)-(5.15c) and (5.47), we consider some nominal
system state, characterized by 𝑥𝑐0, and some deviation from this nominal value,
characterized by 𝛿𝑥𝑐 = 𝑥𝑐−𝑥𝑐0. We write the residual expansions as exact functions
of this perturbation, valid ∀𝛿𝑥𝑐:

̃︀m(𝛿𝑥𝑐) = M2
𝑐0 + J ̃︀m,𝑐0𝛿𝑥𝑐 + 1

2
H ̃︀m,𝑐 (𝛿𝑥𝑐 ⊗ 𝛿𝑥𝑐)− 𝑚̆2 (5.48)

f(𝛿𝑥𝑐) = F𝑐0 + Jf ,𝑐0𝛿𝑥𝑐 + 1
2
Hf ,𝑐 (𝛿𝑥𝑐 ⊗ 𝛿𝑥𝑐)− 𝑓 (5.49)

s(𝛿𝑥𝑐) = S𝑐0 + Js,𝑐0𝛿𝑥𝑐 + 1
2
Hs,𝑐 (𝛿𝑥𝑐 ⊗ 𝛿𝑥𝑐)− 𝑠, (5.50)

where ⊗ is the Kronecker product, and M𝑐0 ≡M(𝑥𝑐0), J ̃︀m,𝑐0 ≡ J ̃︀m,𝑐(𝑥𝑐0), etc. Next,
we derive the Jacobian J and Hessian H terms.

We first consider the Jacobian terms in (5.48)-(5.50). Noting that Z{r,i} ∈ Rm×𝑝,
the Jacobian associated with (5.47b) is simply

𝐽 ̃︀m,𝑐 = 2 [Zr Zi] , Z{r,i}𝑖,𝑗 =

{︃
𝑉{r,i}𝑖 , 𝑗 = M𝑖

0, otherwise,
(5.51)

where M𝑖 refers to the 𝑖th element of set M. The flow and injection Jacobians are first
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given in the more familiar polar coordinates:

Js = (⟨diag(I𝑒−j𝜑)⟩+ ⟨diag(V𝑒j𝜃)⟩𝑁⟨𝑌𝑏⟩)𝑅(V𝑒j𝜃) (5.52)

Jf = (⟨diag(Î𝑙𝑒
−j𝜑̂𝑙)𝐸̂1⟩+ ⟨diag(𝐸̂1V𝑒j𝜃)⟩𝑁̂𝑙⟨𝑌𝑙𝐸̂⟩)𝑅(V𝑒j𝜃). (5.53)

The terms 𝑅(·), 𝑁 , and ⟨·⟩ from (5.52) are explicitly given in [23] and are not re-stated
here. Vector I𝑒j𝜑 is the calculated current injections at all non-slack nodes, and vector
Î𝑙𝑒

j𝜑̂𝑙 is the calculated current flows on all lines with flow measurement devices. The
other hatted terms in (5.53) are equal to their non-hatted counterparts, but with the
set of non-measured lines removed. The form of the flow Jacobian (5.53) is novel
and ultimately represents the derivative of the flow functions (5.15b) on lines where
flow measurements exist. In Cartesian coordinates, the injection and flow Jacobians
(5.52)-(5.53) simplify down to

Js,𝑐 = (⟨diag(𝐼r − j𝐼i)⟩+ ⟨diag(𝑉r + j𝑉i)⟩𝑁⟨𝑌𝑏⟩) (5.54)

Jf ,𝑐 = (⟨diag(𝐼𝑙,r − j𝐼𝑙,i)𝐸̂1⟩+ ⟨diag(𝐸̂1(𝑉r + j𝑉i))⟩𝑁̂𝑙⟨𝑌𝑙𝐸̂⟩). (5.55)

We observe that Jacobians (5.51), (5.54), (5.55) are linear functions of Cartesian
voltage, so their associated Hessians H ̃︀m,𝑐, Hf ,𝑐 and Hs,𝑐 are constant. While not
derived explicitly, these matrices can be found by taking the derivative of Jacobians
(5.51), (5.54), and (5.55) with respect to state vector 𝑥𝑐 (5.46). In the sequel, 𝑉r,𝑖,
for example, refers to the 𝑖th element of the vector 𝑉r which, by definition, excludes
the slack voltage. First, we define the voltage magnitude residual Hessian:

H ̃︀m,𝑐 =
[︁
𝑑J̃︁m,𝑐

𝑑Vr,1
· · · 𝑑J̃︁m,𝑐

𝑑Vr,𝑝

𝑑J̃︁m,𝑐

𝑑Vi,1
· · · 𝑑J̃︁m,𝑐

𝑑Vi,𝑝

]︁
(5.56)

𝑑J̃︁m,𝑐

𝑑Vr,𝑖
= 2 [M 0]

𝑑J̃︁m,𝑐

𝑑Vi,𝑖
= 2 [0 M]

}︃
M𝑗,𝑘 =

{︃
1, M𝑗 = 𝑖, 𝑘 = 𝑖

0, otherwise,
(5.57)

where m = |M|, 𝑝 = 𝑛 − 1, 𝑖∈ [1, ..., 𝑝], 𝑗 ∈ [1, ..., m] and 𝑘 ∈ [1, ..., 𝑝]. Next, we define
the power flow residual Hessian:

Hf ,𝑐 =
[︁

𝑑Jf ,𝑐

𝑑Vr,1
· · · 𝑑Jf ,𝑐

𝑑Vr,𝑝

𝑑Jf ,𝑐

𝑑Vi,1
· · · 𝑑Jf ,𝑐

𝑑Vi,𝑝

]︁
(5.58)

𝑑Jf ,𝑐

𝑑Vr,𝑖
= ⟨diag(𝑌 *

𝑙 𝐸̂e𝑖)𝐸̂1⟩+⟨diag(𝐸̂1e𝑖)⟩𝑁̂𝑙⟨𝑌𝑙𝐸̂⟩ (5.59)
𝑑Jf ,𝑐

𝑑Vi,𝑖
= ⟨diag(−j𝑌 *

𝑙 𝐸̂e𝑖)𝐸̂1⟩+⟨diag(j𝐸̂1e𝑖)⟩𝑁̂𝑙⟨𝑌𝑙𝐸̂⟩, (5.60)

where 𝑖 ∈ [1, ..., 𝑝], and e𝑖 ∈ R𝑝 is the standard unit vector. Finally, we define the
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power injection residual Hessian:

Hs,𝑐 =
[︁

𝑑Js,𝑐

𝑑Vr,1
· · · 𝑑Js,𝑐

𝑑Vr,𝑝

𝑑Js,𝑐

𝑑Vi,1
· · · 𝑑Js,𝑐

𝑑Vi,𝑝

]︁
(5.61)

𝑑Js,𝑐

𝑑Vr,𝑖
= ⟨diag(𝑌 *

𝑏 e𝑖)⟩+⟨diag(e𝑖)⟩𝑁⟨𝑌𝑏⟩ (5.62)
𝑑Js,𝑐

𝑑Vi,𝑖
= ⟨diag(−j𝑌 *

𝑏 e𝑖)⟩+⟨diag(je𝑖)⟩𝑁⟨𝑌𝑏⟩. (5.63)

Concatenating the function, constant, Jacobian, and Hessian terms of (5.48)-(5.50),
and then multiplying through by weighting matrix Σ− 1

2 , we get

r(𝛿𝑥𝑐) = R𝑐0 + J𝑐0𝛿𝑥𝑐 + 1
2
H𝑐(𝛿𝑥𝑐⊗𝛿𝑥𝑐)− 𝑟𝜎. (5.64)

In (5.64), R𝑐0 = Σ− 1
2 [M2𝑇

𝑐0 , F
𝑇
𝑐0, S

𝑇
𝑐0]

𝑇 , and 𝑟𝜎 = Σ− 1
2 [𝑚̆𝑇 , 𝑓𝑇 , 𝑠𝑇 ]𝑇 for example. We

note that (5.64) contains measurement profile 𝑟; this will be updated (i.e. perturbed)
on each sequential state estimation solve.

Reduced Order Modeling

We again hypothesize the existence of some subspace V ∈ R2𝑝×𝑞, 𝑞 ≪ 2𝑝, whose
column space can accurately approximate the solution of a state estimation problem:

𝑥𝑐 ≈ V𝑥̂𝑐, (5.65)

where 𝑥̂𝑐 ∈ R𝑞 is a very low-dimensional vector. Due to linearity, V𝑥̂𝑐 = V𝑥̂𝑐0 + V𝛿𝑥̂𝑐.
We now substitute V𝛿𝑥̂𝑐 ≈ 𝛿𝑥𝑐 into residual function (5.64):

r(𝛿𝑥̂𝑐) = R𝑐0 + J𝑐0𝑉 𝛿𝑥̂𝑐 + 1
2
H𝑐(V⊗V)(𝛿𝑥̂𝑐⊗𝛿𝑥̂𝑐)− 𝑟𝜎. (5.66)

Remark 12. While the state estimation equations of (5.16) are overdetermined due
to measurement redundancy, system (5.64) is overdetermined to a much higher degree
since we have reduced input dimensionality from 𝑥∈R2𝑝 to 𝛿𝑥̂𝑐∈R𝑞, 𝑞≪2𝑝.

To further reduce (5.64), we implement the previously proposed projection, where
we multiply (5.64) through by Ĵ ≡ (J𝑐0V)𝑇 :

r̂(𝛿𝑥̂𝑐) = R̂𝑐0+Ĝ𝑐0𝛿𝑥̂𝑐+
1
2
Ĥ𝑐(𝛿𝑥̂𝑐⊗𝛿𝑥̂𝑐)− ˆ̆𝑟𝜎, (5.67)

whose variable definitions may be inferred. Since (5.67) now has the same number of
equations and unknowns, the reduced residual vector r̂(𝛿𝑥̂𝑐) can be driven to zero.
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The approximated Newton-like iterative solution for (5.67) is given by

𝛿𝑥̂(𝑖+1)
𝑐 = 𝛿𝑥̂(𝑖)

𝑐 − Ĝ−1
𝑐0 r̂(𝛿𝑥̂

(𝑖)
𝑐 ). (5.68)

System (5.68) is extremely low dimensional compared to analogous system (5.20),
and it can therefore be iterated very rapidly. When r̂ → 0 and (5.68) converges,
the low-dimensional solution is converted back to the full order state vector: 𝑥𝑐 ←
𝑥𝑐0 + V𝛿𝑥̂𝑐. As the state estimator solves new measurement profiles, the Jacobian
J𝑐0 is continuously recycled, but R̂𝑐0 = (J𝑐0V)𝑇R𝑐0, Ĝ𝑐0 = (J𝑐0V)𝑇 (J𝑐0V), and Ĥ𝑐 =

(J𝑐0V)𝑇H𝑐(V⊗V) are continuously updated as basis V dynamically expands.

Definition 16. We define the iterative algorithm (5.68) as the Reduced Model State
Estimator (RMSE).

Dynamic Subspace Expansion

In order to dynamically construct the orthonormalized subspace V, we leverage the
dynamic subspace expansion approach proposed in [54]. Our version of this procedure
takes sequential state estimation solutions 𝑥𝑐 and projects them onto the subspace:
𝑣 = 𝑥𝑐 − VV𝑇𝑥𝑐. If ‖𝑣‖>𝜖, then V is updated:

V = [V 𝑣/ ‖𝑣‖ ]. (5.69)

When V is updated, the values of R̂𝑐0, Ĝ𝑐0, and Ĥ𝑐 are also updated. Vector ˆ̆𝑟𝜎 is
also updated, but this changes for each new measurement profile, regardless. For an
efficient update scheme, please refer to the DSE algorithm presented in the previous
section (i.e. Algorithm 12).

Definition 17. We define the update procedure (5.69) and the associated updates of
R̂𝑐0, Ĝ𝑐0, and Ĥ𝑐 as the Dynamic Subspace Expansion (DSE) routine.

Accelerated Probabilistic State Estimation

We now describe the full APSE procedure, which is depicted in Fig. 5-8. For each
new measurement profile input 𝑟𝑖, the RMSE of (5.68) attempts to solve the state
estimation problem. If the solution does not meet the convergence criteria of the full
order state estimator, then the Gauss-Newton via QR factorization algorithm of (5.22)
is used to solve the system. Finally, if the GNvQR solution does not have a sufficiently
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Figure 5-8: In the APSE algorithm, sampled measurement profiles are passed to
the RMSE. If the results are of sufficient accuracy, the solver moves on to the next
measurement profile. Otherwise, GNvQR solves the system. The resulting solution
is then conditionally used to update basis V.

large component is the basis, then V is updated and passed back the RMSE. As basis
V expands, the RMSE returns solutions which are of higher and higher accuracy. For
more detailed steps, Algorithm 14 provides procedural pseudocode.

Testing the quality of the RMSE solution on the full order model is a nontrivial
operation. Since an optimal state estimation solution generally yields a non-zero
residual, decreasing step size is often used as convergence criteria. To test if our
RMSE solution meets this step size-based convergence criteria, we pre-factor a scaled
Jacobian via 𝒬0ℛ0 = Σ− 1

2J𝑐0, where, for speed, 𝒬0 and ℛ0 are continually recycled.
If

‖ℛ−1
0 𝒬𝑇

0 r(𝑥𝑖)‖∞ < 𝜖 (5.70)

is satisfied, then the RMSE solution is accepted. This test is shown on bottom right
of Fig. 5-8 and line 12 of Algorithm 14.

5.3.2 Numerical Test Results

In this section, we present test results collected from the unbalanced, three-phase
IEEE 8500-node distribution network. A detailed overview of this system is provided
in the previous section. To engender a realistic amount of measurement redundancy,
we assume complex power flow measurements are collected on 300 medium-voltage
lines throughout the network, and voltage magnitude measurements are collected at
300 medium-voltage nodes throughout the network. At the majority of the approx-
imately 2,500 low-voltage loads, we assume the availability of real-time smart-meter
data in the form of complex power injection measurements.

Next, we identify two regions in the network which contain substantial load mea-
surement uncertainty2. These regions are termed Uncertainty Regions (URs), and

2Such uncertainty could be caused by localized inclement weather effects, localized signal loss, or
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Algorithm 14 Accelerated Probabilistic State Estimator (APSE)
Require: Initial voltage solution 𝑥𝑐0 of measurement profile 𝑟0, weighted R𝑐0 and weighted
Jacobian J𝑐0 evaluated at 𝑥𝑐0, weighted Hessian H𝑐, measurement profiles 𝑟𝑖 for 𝑖 = 1, 2, ...𝑀

1: function [𝑥1,𝑥2...𝑥𝑀 ]←APSE(𝑟,𝑥𝑐0,R𝑐0,J𝑐0,H𝑐, 𝐽r(·),Σ)
2: 𝑥̂𝑐0 ← ‖𝑥𝑐0‖
3: V← 𝑥𝑐0/𝑥̂𝑐0

4: R̂𝑐0 ← (J𝑐0V)𝑇R𝑐0

5: Ĝ𝑐0 ← (J𝑐0V)𝑇 (J𝑐0V)
6: Ĥ𝑐 ← (J𝑐0V)𝑇H𝑐(V⊗V)
7: 𝑖← 1
8: while 𝑖 ≤𝑀 do
9: ^̆𝑟𝑖 ← (J𝑐0V)𝑇Σ− 1

2 r̆𝑖
10: 𝛿𝑥̂𝑐 ← Solve RMSE of (5.68) to convergence
11: 𝑥𝑖 ← Cartesian-to-Polar{𝑥𝑐0 + V𝛿𝑥̂𝑐}
12: if ‖ℛ−1

0 𝒬𝑇
0 r(𝑥𝑖)‖∞ > tolerance 𝜖𝑁 then

13: 𝑥𝑖 ← Solve GNvQR of (5.22) to convergence
14: 𝑥𝑐,𝑖 ← Polar-to-Cartesian{𝑥𝑖}
15: Update V, R̂𝑐0, Ĝ𝑐0, Ĥ𝑐 via (5.69) and DSE routine

end
16: 𝑖← 𝑖+ 1

end
17: return 𝑥1,𝑥2, ...,𝑥𝑀

both of them are geographically identified in Fig. 5-9. As in [110], we assume the
load uncertainty in these URs is uniformly distributed. The upper and lower bounds
of these uniform distributions are chosen as ±50% of the historical usage mean. Next,
we sample from each of these load distributions 1000 times, and we then solve 1000
instantiations of the state estimation problem (5.17).

For comparison purposes, we first solve each of the resulting state estimation
problems using the traditional GNvQR algorithm (5.22). Sample voltage and current
results are shown in Fig. 5-10. Timing results are shown in Fig. 5-11. The average
solve time of the GNvQR algorithm for each measurement profile was 0.33 seconds,
yielding a total solve time of 332 seconds.

Next, we solved the sequential state estimation problems using the APSE pro-
cedure. The timing results in Fig. 5-10 show that once the subspace V had been
completed (i.e it was filled out enough to solve all future measurement profiles), the
APSE algorithm was approximately 4.5 times faster that the traditional GNvQR
solver. Furthermore, we include the solve times of the RMSE algorithm itself (which
is internal to the APSE – see Fig. 5-8). The RMSE is an order of magnitude faster
than the APSE. This is because the main bottleneck of the APSE is not the reduced

even a lack of measurement devices in some region.
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Figure 5-9: Map of the 8500-node network (LV distribution load buses not shown).
The two measurement Uncertainty Regions (URs) are identified. In each of these
URs, we identify 30 loads whose measurements are highly uncertain.
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Figure 5-10: Shown are voltage magnitude (panel (a)) and current magnitude (panel
(b)) histograms resulting from the 1000 solves of the 8500-node network.

model solves, but instead the testing of the reduced model solution on the full order
model via (5.70). Future work will focus on developing a reduced model solution
testing procedure which is faster than (5.70).

1 50 100  186 250 500

10-2

100

Figure 5-11: Timing analysis of the full order solver (GNvQR), the APSE, and the
RMSE. After measurement profile 186, the APSE is 4.5 times faster than the GNvQR
procedure. The amount of time spent testing the RMSE solution via (5.70) dominates
the APSE and is shown by the double-arrow. The expansion of Ĥ concludes after
measurement profile 50.
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Chapter 6

Conclusions and Future Work

In this chapter, we offer concluding remarks associated with each of the problems
considered in this thesis. Following these remarks, we offer a series of proposed
future work extensions associated with each project.

6.1 Concluding Remarks

Through extensive investigations, we have confirmed the central premise of the thesis,
as stated in Section 1.1. That is, we conclude that the inverse problem tools of
inference, estimation, and prediction can be used to characterize useful1 power system
models. While each of the addressed problems are united under the same application
(i.e. data-driven control of power systems), the modeling and solution methodologies
varied widely. Before recounting the specific contributions and results from each
chapter, we first offer a single descriptive paragraph which ties all four modeling and
solution methodologies together in a single cohesive manner.

Locating the sources of forced oscillations in power systems can be sim-
plified by considering an equivalent problem in the frequency domain,
where FO sources show up like analogous current injections. Since the
associated equivalent circuit obeys the corresponding laws of steady-state
linear circuit theory, including Tellegen’s theorem, various forms of quadra-
tic power are conserved in the network, and the system can be natu-
rally analyzed from an (incremental) energy perspective. On a smaller
scale, microgrid networks can be described identically, minus the forcing
function, with all of their linearized dynamics encoded in a perturbative

1The term “useful” is defined relative to the application (i.e. data-driven control from Fig. 1-1)
and the ultimate goal of the application (i.e. power system stability).
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admittance matrix model. By analyzing the frequency response associ-
ated with this model’s constituent components, quadratic energy functions
(i.e. DQR-transformation matrices) can be identified which guarantee the
transformed system will remain DQR, and therefore, small-signal stable
under any interconnection of the considered devices. In both problems
(FOs and microgrids), though, a suitable linearized model is required to
perform such analysis. To this end, vector fitting approaches, such as the
proposed RTVF procedure, can leverage measured terminal input/output
data to construct a MIMO surrogate model of such underlying linearized
dynamics. Despite its predictive capabilities, such a model will naturally
be a surrogate of (typically) reduced order, only capturing the effects
which are sufficiently salient in the observed data. The sheer size of power
systems naturally invites such reduced order modeling techniques. Model
order reduction can be applied not only to the system dynamics, but also
to the steady state network models, whose solutions typically operate in
low-dimensional subspaces over short operational periods due to natural
loading correlation and engineered network structuring. Accordingly, a re-
duced order surrogate model of the network’s power flow equations can be
constructed via projection-based model order reduction techniques. Once
completed, this densely structured ROM can be used to solve the net-
work equations, relative to some practical degree of accuracy, orders of
magnitude faster than the full order model can.

6.1.1 Forced Oscillations

In Chapter 2, we proposed an equivalent circuit transformation of a time domain
power system model. This equivalent circuit is constructed by linearizing and care-
fully transforming the power system model into the frequency domain, and thus
constructing the FRF associated with individual network elements. In order to per-
form source identification, we showed that FO sources show up like current sources
in this equivalent circuit. By comparing a generator’s measured and predicted cur-
rent spectrums around the forcing frequency, and then comparing the results to a
calculated noise floor, we developed a simple decentralized procedure for locating the
source of the current injection (i.e. FO) exciting the circuit. Initially, our methodol-
ogy assumed the operator has access to the high fidelity generator models and their
associated parameters.

In the second part of this chapter, we developed a Bayesian framework for locat-
ing the sources of FOs in the presence of generator model parameter uncertainty and
strong measurement noise effects. By incorporating generator model parameter priors
and a carefully constructed likelihood function, we formulated a Maximum A Poste-
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riori optimization problem which could be solved in a decentralized manner. In each
of the provided test cases, the optimizer was able to reconstruct the generator param-
eters with a sufficiently high degree of accuracy to ultimately allow for the origins of
the FOs to be exactly located. Additionally, the method showed good performance
in the context of a system experiencing multiple concurrent FOs. Although applied
exclusively to generators, the methodology could be extended to other dynamic el-
ements of the power system, such as dynamic loads or FACTS devices, which may
also represent FO sources. And while Algorithm 1 was designed for the purpose of
locating FO sources, it also presents a potentially useful method for performing inde-
pendent parameter estimation, with direct applications to dynamic model verification
and load modeling.

In the third part of this chapter, we interpreted the popular DEF method from
the viewpoint of either (i) a dissipative system with a particular quadratic supply rate
in the time domain, or (ii) a transformed system which became positive real in the
frequency domain. After defining the associated DQR-transformation matrices, we
were able to use eigenvalue analysis to algebraically classify various component mod-
els from power systems as either DQR or non-DQR. Next, we utilized the proposed
equivalent circuit transformation to build up a full “perturbative” system model; this
perturbative model provides a useful framework for understanding how FOs linearly
propagate in a electrical power systems. Using Tellegen’s theorem, we leveraged this
perturbative propagation framework to further motivate and analyze the DEF method
at a system level; this is the first system-level investigation of the DEF method, to
the authors’ knowledge. We proved that the DEF’s shortcomings in a classical power
system cannot be avoided by simply selecting a new DQR-transformation (quadratic
energy function). We further developed necessary (and by extension, sufficient) con-
ditions for the failure of the DEF method. When power system operators have access
to an analytical system model, they may use our proposed framework to analytically
predict apriori if the DEF method might fail (𝜆1 ≥ 0, 𝜆2 ≤ 0), will fail (𝜆1, 𝜆2 ≤ 0),
or will succeed (𝜆1, 𝜆2 ≥ 0). This may be especially useful in small, microgrid net-
works where system architecture is known more fully and line loss ratios are much
higher. One obvious drawback to the proposed approach for the apriori testing of
DEF performance is the need for an analytical system model. Load models, espe-
cially, may be highly uncertain from the perspective of a system operator. Several
of the theorems in this section assumed a lossy classical power system model, but
the underlying frameworks for building the perturbative network model and testing
the DEF method are actually quite general and can be used to interpret a variety of
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linear propagation phenomena.

6.1.2 Microgrid Stability Certificates

In Chapter 3, we developed fully decentralized small-signal stability criteria for mi-
crogrid networks. If satisfied, this criteria can allow for the plug-and-play operability
of the considered microgrid elements. The proposed decentralized conditions allow
us to step beyond the traditional DQR approach (which utilizes a standard quadratic
energy function) and utilize different certificates in different regions of frequency do-
main. We believe that these results will have practical impact, such as by fostering
the development of ready-to-use standards for microgrid loads and sources, that can
be directly used by industry.

In the first part of the chapter, we considered DC microgrids, and we developed
a procedure which simply analyzes the phase response of properly parameterized
microgrid elements. If the phase responses satisfy (or, can be engineered to satisfy)
certain criteria across some region of the frequency domain, then there exists an energy
function which can certify the small-signal stability of the considered elements, under
an arbitrary interconnection, in that particular region of the frequency spectrum. We
then tested the proposed methods on a simulated low voltage DC microgrid network
with buck-converter interfaced loads.

In the second part of the chapter, we considered AC microgrids, where the simple
phase condition developed in the first part is systematically replaced by parameterized
transformation matrices. Once identified, these transformation matrices can be used
to certify the plug-and-play stability of various AC microgrid elements across relevant
bands of the frequency spectrum. In the test results section, we identified once such
matrix which was parameterized using sigmoid functions and could certify the plug-
and-play stability of a droop-controlled inverter-based AC microgrid model (for the
given parameter values).

6.1.3 Predictive Modeling via Vector Fitting

In Chapter 4, we proposed a new procedure, termed Real-Time Vector Fitting (RTVF),
which performs real-time predictive modeling of linearized dynamics. While the
RTVF algorithm can be applied across a broad range of dynamical engineering sys-
tems, it was specifically developed to perform real-time predictive modeling of gen-
erator dynamics in the presence of ambient perturbations. Accordingly, RTVF ex-
plicitly accounts for the presence of initial state decay in the generator’s observed
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outputs. Also, RTVF can be applied in the face of concurrently active input signals,
since this is a practical constraint for any three-phase power system component mod-
eled using a quasi-stationary phasor approximation at its terminals. The simulated
test results, collected from synthetic test systems and high order nonlinear generator
models, show-cased RTVF’s ability to perform online predictive modeling with a high
degree of accuracy. In order to model power system components which have some
degree of inherent stochasticity, we proposed an extension of the RTVF protocol,
termed stochastic-RTVF (sRTVF). Using correlation functions, sRTVF attempts to
eliminate unobservable noisy inputs which stochastically interfere with deterministic
predictive modeling methods (such as the canonically posed RTVF).

Given the widescale deployment of PMUs and the newly mandated MOD-33 mod-
eling/validation ordinances, RTVF provides power system operators with a valuable
tool. This tool, for example, can build real-time models of generator systems whose
physical prior models are completely unknown. It can also validate or enhance prior
models which are supposedly well known. Additionally, since controller parameters
(e.g. droop gains) are often changed at the local level without system operator aware-
ness, RTVF can be used to infer the true value of these parameters in real-time. Such
capability allows system operators to maintain small-signal stability and ensure that
generators are properly adhering to market regulations. To enhance practical ef-
fectiveness, future extensions could couple RTVF with advanced measurement noise
filtering mechanisms. Also, physically-aware regularization techniques could be devel-
oped to allow system operators to more effectively “track” a system’s shifting dynamics
as operating equilibriums evolve over time.

6.1.4 Distribution System Power Flow and State Estimation

In Chapter 5, we showed how to speed up “any” sampling-based PPF solver by 1)
leveraging the low-rank nature of distribution network voltage profiles and generat-
ing a surrogate ROM, and 2) exploiting the “small” nature of distribution network
loads and applying a custom Neumann series-based method. Our resulting APPF
algorithm, which combines both contributions, was tested on the 8500-node network,
speeding up state of the art PPF methods by up to 60 times.

Next, we applied the same ROM methodology to the problem of probabilistic state
estimation in distribution systems. The resulting algorithm, termed the Accelerated
Probabilistic State Estimator (APSE), was found to be approximately 4.5 times faster
than a traditional full order Gauss-Newton-based state estimator in the 8500-node
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network. The super majority of the APSE run-time, though, was spent testing the
quality of the resulting solution on the full order system. Without this test, the APSE
is over 50 times faster than the full order estimator.

Coupling the APPF and APSE algorithms with advanced uncertainty quantifi-
cation and collocation sampling tools will be a highly useful and readily applicable
next step for this work. Dramatically speeding up power flow and state estimation
solve times in massive distribution networks, though, has a plethora of potential uses,
even beyond short-term probabilistic modeling. For example, the methods can be
applied when solving the network equations associated with any ensemble of power
injection profiles. This ensemble could be associated with some long-term planning
horizon for either determining optimal control policies or making asset utilization
and investment decisions. Additionally, due to its small size and dense structure, the
ROM itself could (i) contain practically useful information about the network and
(ii) be used as a surrogate in all sorts of real-time model predictive control (MPC)
applications which are inherently time constrained.

6.2 Future Work Extensions

We now present three potential extensions to the work presented in this thesis. The
first extension proposes the use of machine learning for identifying more suitable
energy functions for oscillation tracing and microgrid stability analysis. The second
proposes embedding a Volterra series into the vector fitting formulation to capture
nonlinear (or at least weakly nonlinear) effects. Finally, the third extension proposes
an observability framework for distribution grid estimation and control.

6.2.1 Identifying Effective Energy Functions: From Semidefi-

nite Programming to Neural Networks

In Chapters 2 and 3, we relied heavily on, so-called, DQR-transformation matrices
M(𝑠) and Γ(𝑠). For example, in Chapter 2, we identified the DQR-transformation
matrices implicitly associated with the DEF method, and in Chapter 3, we sought to
identify parameterized versions of these matrices (i.e. M(𝑠, 𝛼), Γ(𝑠, 𝛼)) that could
generate decentralized small-signal stability certificates.
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A Semidefinite Programming Approach

In order to both (i) improve upon existing energy-based methods for performing FO
source identification, and (ii) identify matrices which render a larger class of microgrid
components DQR, semidefinite programming approaches can be naturally formulated.
While the following methodology could be applied to either problem (i) or (ii), we
use FO tracing (rather than microgrid stability) as the guiding example.

Consider a linearized power system Σ𝑙 composed of many linearized sub-systems
Σ𝑙,𝑖 (i.e. lines, loads, generators with controllers). Each of these subsystems are char-
acterized by two primary features: parameter values (𝑝) and equilibrium point (𝜅).
We then build the frequency response function 𝒴𝑖(𝜔,𝑝, 𝜅) for each of these elements,
which is a function of frequency, parameter values, and linearization (equilibrium)
point 𝜅. Our task, then, is to find a set of common transformation matrices M(𝜔)

and Γ(𝜔) which render all elements of the network positive real, across all potential
parameter values and equilibrium points. Mathematically, this can be stated as a fea-
sibility problem: can we find common matrices M(𝜔) and Γ(𝜔) which simultaneously
make all system elements positive real?

min
M,Γ

{·} (6.1)

s.t. M(𝜔)𝒴𝑖(𝜔,𝑝, 𝜅)Γ(𝜔)+(M(𝜔)𝒴𝑖(𝜔,𝑝, 𝜅)Γ(𝜔))† ≻ 0, ∀𝑖, ∀𝜔 > 0, ∀𝑝∈𝒫 , ∀𝜅∈𝒦

det{M(𝜔)} ≠ 0, ∀𝜔 > 0

det{Γ(𝜔)} ≠ 0, ∀𝜔 > 0,

where 𝒫 is the plausible set of model parameters and 𝒦 is the plausible set of equi-
librium points. If we can find these matrices, then per (2.126), there will be an
associated time domain integral which “outperforms” the DEF method. As posed
(6.1), is totally intractable and, per Theorem 2, certainly infeasible. Therefore, we
can transform (6.1) into a relaxed minimization which just penalizes the constraint for
not being met exactly. One such relaxation might penalize the cost function whenever
both eigenvalues are not positive:

max
M,Γ

∑︁
𝑖,𝜔,𝜅,𝑝

det{A𝑖(𝜔,𝑝, 𝜅)} · trace{A𝑖(𝜔,𝑝, 𝜅)} (6.2)

s.t. A𝑖(𝜔,𝑝, 𝜅) = M(𝜔)𝒴𝑖(𝜔,𝑝, 𝜅)Γ(𝜔) + (M(𝜔)𝒴𝑖(𝜔,𝑝, 𝜅)Γ(𝜔))†

det{M(𝜔)} ≠ 0, ∀𝜔 > 0

det{Γ(𝜔)} ≠ 0, ∀𝜔 > 0.
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Such an optimization approach may still be computationally infeasible, given its sheer
size, and the resulting matrices may not be able to render “enough” system compo-
nents DQR.

A Neural Network Approach

Alternatively, we can choose to search for any energy function which is not constrained
to a quadratic functional form. In this case, concepts such as positive realness and
DQR are no longer relevant, because the supply rate is no longer quadratic in nature.
Instead, we can look for some sort of generic non-singular energy functional which
always decays. To state this mathematically, we define the dynamical transition
function Φ𝑖 which maps the inputs from sub-system Σ𝑖 to its outputs (through time
domain integration somehow): 𝑦 = Φ𝑖(𝑢,𝑝, 𝜅). Using massive amount of training
data, we can seek to use a neural network which effectively identifies a function 𝑓(·)
which satisfies

min
𝑓(·)
{·}

s.t. 𝑓(𝑢,𝑦) > 0, ∀𝑖, ∀𝑢, ∀𝑝,∀𝜅

𝑦 = Φ𝑖(𝑢,𝑝, 𝜅).

Other constraints are probably needed, and the function may need a more specific
form. The main idea, though, is this: if all elements of the network dissipate the
“energy” defined in function 𝑓(·), then the source must supply this “energy”.

6.2.2 Predictive Modeling of Weakly Nonlinear Systems: Em-

bedding a Volterra Series inside Vector Fitting

Despite its versatility, efficiency, and predictive modeling capabilities, vector fitting
approaches are highly sensitive to, and greatly impacted by, the effects of nonlinear
residuals in the data. Accordingly, the VF approaches presented in this thesis are
only suitable when the underlying dynamics are highly linear (i.e. weakly, weakly
nonlinear). In order to overcome this limitation, future work can focus on embedding
a so-called Volterra series [63] inside of a time domain-based vector fitting formula-
tion. Volterra series are most applicable for describing weakly nonlinear systems, and
they are commonly used to capture the distortion effects associated with transistor
amplification.
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Figure 6-1: A depiction of a vector fitting procedure which has been embedded with
a Volterra series representation of the underlying dynamical system.

TDVF, RTVF, and sRTVF all leverage a classical result of linear system theory:

𝑦(𝑡) =

∫︁ 𝑡

0

ℎ(𝑡− 𝜏)𝑥(𝜏)d𝜏. (6.3)

That is, the output 𝑦(𝑡) of a linear system can be computed by convolving the input
𝑥(𝑡) with the system dynamics ℎ(𝑡) (as codified by the impulse response). When the
system dynamics are not linear, though, a Volterra series may be instead employed:

𝑦(𝑡) = ℎ0 +

∫︁ 𝑡

0

ℎ1(𝜏)𝑥(𝑡− 𝜏)d𝜏 +

∫︁ 𝑡

0

ℎ2(𝜏1, 𝜏2)𝑥(𝑡− 𝜏1)𝑥(𝑡− 𝜏2)d𝜏1d𝜏2

+

∫︁ 𝑡

0

ℎ3(𝜏1, 𝜏2, 𝜏3)𝑥(𝑡− 𝜏1)𝑥(𝑡− 𝜏2)𝑥(𝑡− 𝜏3)d𝜏1d𝜏2d𝜏3 + · · · (6.4)

where ℎ𝑖 are known as Volterra kernels. For convenience, we choose to write (6.4)
via 𝑦(𝑡) =

∑︀
𝑖 𝐻𝑖 } 𝑥(𝑡). To formulate a vector fitting-type problem, we recognize

(6.4) as a sort of filtering procedure associated with some set of basis poles. Once
this filtering has occurred, the standard vector fitting procedure may commence, as
depicted by Fig. 6-1. In this procedure, once the “filtering” stage as been completed,
the (generalized) residual coefficients can be solved for in a linear least squares sense2.
Next, the basis poles of the Volterra kernels can be updated using these new residual
coefficients. Finally, a convergence criteria can be tested.

Regarding this proposed procedure, there are two primary open research questions.
First, how can the Volterra series representation be embedded with basis poles, as
we do in standard vector fitting? (See, for example, the 𝑠 − 𝑞𝑛 terms in (4.7)).
Second, once the residual coefficients have been computed, how do we update the
basis-embedded-kernels, as portrayed in the lower right block of Fig. 6-1? Once these
technical questions have been addressed, the procedure could be ready for testing.

2In order to effectively shrink the dimensionality of the problem, slight 𝑙2 norm regularization can
be added which penalizes the size of the coefficients associated with the most nonlinear components
of the model. This may help “steer” the solution towards a more linear one, if desired.
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As one final note, we recall that the stochastic-RTVF scheme is built around the
fundamental principle of causality. Since any physical system, be it hyper-nonlinear
or purely linear, obeys causality, we note that a stochastic variation of the Volterra
embedded procedure from Fig. 6-1 may be realized. This could allow for the real-time
predictive modeling of nonlinear systems which suffer from unobservable stochastic
variations. Such an algorithm could be very powerful and extremely useful.

6.2.3 Representing the Estimation, Control and Performance

of Distribution Grids as a Cascade of Nonlinear Maps

In this subsection, we consider how the interaction between estimation, control, and
performance maps can lead to a smaller, more targeted reduced order model of a
distribution network. We begin by considering the operational paradigm portrayed
by Fig. 6-2. In this figure, state estimation yields some data set 𝑥. Next, this data set
is used to make some set of control decisions 𝑤. Finally, the control decisions have an
impact on the network, and this is quantified by some performance metric 𝑚, which
somehow quantifies the performance of the network in practically meaningful ways.
An important observation, though, is that some data which is “observed” through the
state estimation routine may not be used or needed by the controller. Furthermore,
we note that some control decisions may have no impact on the performance of the
network. Practical quantification of such impact, though, must be performed in a
high dimensional space, since the interaction between certain control decisions could
amplify or negate each other3. In the end, the performance metric 𝑚 is key, and
observable data and control decisions which do not affect the system performance are
effectively irrelevant. The functions in Fig. 6-2 inspire the following interactions:

𝑚 = f(𝑥,𝑝,𝑤) (6.5a)

= f(𝑥,𝑝,h(𝑥,𝑝)) (6.5b)

= f(g−1(𝑦),𝑝,h(g−1(𝑦),𝑝)). (6.5c)

With this observation in mind, we may consider Fig. 6-3, which shows the ex-
plicit overlap between estimation, control, and performance. The star in the middle
represents the region of state space which can be estimated, is used by the controller,

3Consider, for example, a difference amplifier in the field of circuits: 𝑦 = 𝐾(𝑥1 − 𝑥2). While
output 𝑦 is sensitive to both Δ𝑥1 and Δ𝑥2, it is not sensitive to Δ𝑥1 = Δ𝑥2.
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Figure 6-2: Interaction between estimation, control, and performance processes in a
distribution network.

estimatable, but is not
used by controller and does 

not affect performance

needed by controller, but 
is not estimatable and 

dosn't affect performance

affects performance, but is 
not estimatable and isn't 
reached by control effect

estimatable, used by controller, 
and affects performance

Figure 6-3: Overlap between what can be observed through state estimation, what
is needed for control, and what affects system performance. This diagram is overlaid
on a “generalized” state space, since the state space region might refer to more than
just the canoncial nodal voltage “state” vector 𝑥 = [V𝑇 , 𝜃𝑇 ]𝑇 . We note that in a
practical system, some regions of overlap between these circles may be null.

and eventually has effect on the system performance metric. From the perspective of
state estimation/reconstruction by a ROM, this is the most important region of the
diagram, since the results will be both used by a controller and have effect on the
system performance.

In order to speed up the power flow and state estimation problems, we leveraged
a ROM of the power flow and state estimation equations. When building up this
ROM, we ensured that it would be able to accurately reconstruct the full state of
the network (i.e. accurate complex voltages at every node in the network). From a
practical perspective though, we can seek to construct a reduced order model whose
output preserves the relationship between performance 𝑚 and measurements (or
forecasts) 𝑦 from (6.5c). Thus, future work should characterize (6.5c) and implement
a more targeted reduced order modeling strategy in order to eliminate aspects of the
ROM which produce information which has no effect on system performance.
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Appendix A

Forced Oscillation Modeling Tools

A.1 Modeling Phase Shifting Transformers
We consider the complications associated with a two port element whose current
flow is not a linear function of terminal voltage differentials. To do so, we return
to a standard steady state (rather then perturbative) power system model, and we
consider a transmission line with complex admittance 𝑦𝑖𝑗 ∈ C1. If 𝑉𝑖, 𝑉𝑗 ∈ C1 are
the phasor voltages associated with buses 𝑖 and 𝑗, then the standard two port model
associated with a tap changing transformer may be stated as[︂

𝐼𝑖𝑗
𝐼𝑗𝑖

]︂
=

[︂ 𝑦𝑖𝑗
𝑐2

−𝑦𝑖𝑗
𝑐

−𝑦𝑖𝑗
𝑐

𝑦𝑖𝑗

]︂ [︂
𝑉𝑖

𝑉𝑗

]︂
, (A.1)

where 𝑐 is the tap ratio and 𝐼𝑖𝑗, 𝐼𝑗𝑖 ∈ C1 are the current flows. Considering the top
equation, the flow 𝐼𝑖𝑗 may be written as

𝐼𝑖𝑗 =
𝑦𝑖𝑗
𝑐2

𝑉𝑖 −
𝑦𝑖𝑗
𝑐
𝑉𝑗 (A.2a)

=
𝑦𝑖𝑗
𝑐

(︁
𝑉𝑖 − 𝑉𝑗

)︁
+ 𝑉𝑖𝑦𝑖𝑗

(︂
1− 𝑐

𝑐2

)︂
. (A.2b)

From (A.2b), we may thus interpret 𝑦𝑖𝑗/𝑐 as the series impedance between the lines,
and we may interpret 𝑉𝑖𝑦𝑖𝑗(1− 𝑐)/𝑐2 as a shunt current injection at bus 𝑖 caused by
the tap changer. A similar shunt injection will exist at bus 𝑗. In this way, any two
port element whose current flow isn’t directly proportional to 𝑉𝑖 − 𝑉𝑗 (phase shifting
transformer, HVDC line, etc.) can be expressed as the sum of a linear flow term
and a shunt injection term. Once these relations are appropriately converted into the
perturbative system model, matrices (2.160) and (2.162) can be updated accordingly.
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A.2 Polar to Cartesian Transformation Matrices
An inherent problem exists when attempting to compute (2.199) in a realistic power
system. Because the system has natural integration effects, the phase angles of the
system constantly drift; this can be seen in the (simulated or real) time series data
of any system with stochastic loads. Because generator admittance can be a function
of steady state rotor angle 𝛿, such as in (2.135), the underlying admittance will
be constantly changing as system phase angle drifts. Due to the infusion of such
nonlinear effects, FFT analysis of rectangular (or Cartesian) coordinate variables will
yield outputs which are incompatible with the perturbative model proposed in Section
2.4.2: the underlying admittances will be constantly changing as system phase angle
drifts. Polar coordinate formulations, however, do not have this same drawback. As
a workaround, we may introduce the concept of effective rectangular perturbation.
To do so, we first introduce matrices T1 and T1,𝑖 which linearize standard phasors
𝑉r + j𝑉i = V𝑒j𝜃 and 𝐼r + j𝐼i = I𝑒j𝜑, respectively [39, eq. (10)]:[︂

∆𝑉r

∆𝑉i

]︂
=

[︂
cos(𝜃) −V sin(𝜃)
sin(𝜃) V cos(𝜃)

]︂
⏟  ⏞  

T1

[︂
∆V
∆𝜃

]︂
(A.3)

[︂
∆𝐼r
∆𝐼i

]︂
=

[︂
cos(𝜑) −I sin(𝜑)
sin(𝜑) I cos(𝜑)

]︂
⏟  ⏞  

T1,𝑖

[︂
∆I
∆𝜑

]︂
. (A.4)

We now assume we have some admittance 𝒴𝑔 which relates polar voltage and current
perturbations via Ĩ𝑝 = 𝒴𝑔Ṽ𝑝. This relationship will not be affected by system phase
angle drift. We thus transform the expression via

T1,𝑖Ĩ𝑝 =T1,𝑖𝒴𝑔T
−1
1 T1Ṽ𝑝 (A.5a)

Ĩ𝑒 =
(︀
T1,𝑖𝒴𝑔T

−1
1

)︀
Ṽ𝑒, (A.5b)

where 𝜃 and 𝜑 from (A.3)-(A.4) are chosen as their respective instantaneous values
at 𝑡=0 in the PMU data (any reference angle may be used so long as it is consistent
across all transformations). Vectors Ĩ𝑒 and Ṽ𝑒 represent the effective rectangular
perturbation vectors. Thus, (A.5b) is a fully consistent equation and may be used to
update the 𝑃 ⋆ flow equation in (2.199).

A.3 Positive Realness: Admittance and Impedance
Rather than dealing with the admittance 𝒴 from Ĩ = 𝒴Ṽ, it may be convenient
to deal with impedance 𝒵 = 𝒴−1 instead. We define N𝒴 = M𝒴 + (M𝒴)† and
N𝒵 = M𝒵 + (M𝒵)†.

Theorem 7. Iff N𝒴 is (non)DQR, N𝒵 is (non)DQR.
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Proof. Starting with Ĩ = 𝒴Ṽ, we multiply through by Ṽ†M:

Re{Ṽ†MĨ} = Re{Ṽ†M𝒴Ṽ}. (A.6)

Similarly, starting with 𝒵 Ĩ = Ṽ, we multiply through by Ĩ†M:

Re{Ĩ†M𝒵 Ĩ} = Re{Ĩ†MṼ}. (A.7)

Since Re{Ṽ†MĨ} = 𝛼 ∈ R, then

(𝛼)† = Re{Ṽ†MĨ}† (A.8a)

= Re{Ĩ†MṼ} (A.8b)

since M = M†. Because Re{Ĩ†M𝒵 Ĩ} = Re{Ṽ†M𝒴Ṽ},

Ĩ†(M𝒵 + (M𝒵)†)Ĩ = Ṽ†(M𝒴 + (M𝒴)†)Ṽ. (A.9)

Thus, N𝒴 and N𝒵 share the same dissipativity classification.

A.4 DEF: A Power-Voltage Formulation
The original DEF integral, as given in [35], may be stated as

𝑊DE =

∫︁
Im {𝐼*d𝑉 } (A.10a)

=

∫︁
Im
{︀(︀

𝑃+𝑗𝑄
V𝑒j𝜃

)︀
dV𝑒j𝜃

}︀
(A.10b)

where dV𝑒j𝜃 = (V̇ + j𝜃V)𝑒j𝜃d𝑡. We thus restate 𝑊DE as

𝑊DE =

∫︁
Im{ 1

V
(𝑃 + 𝑗𝑄)(V̇ + j𝜃V)d𝑡} (A.11a)

=

∫︁
(𝑃𝜃 + 𝑄V̇/V)d𝑡. (A.11b)

Other publications commonly state the term (𝑄V̇/V)d𝑡 as 𝑄d ln(V). Assuming small
perturbations of (A.10), we may write d ln(V) ≈ dV/V0 = (V̇/V0)d𝑡. We have

𝑊DE ≈
∫︁

(𝑃𝜃 + 𝑄V̇/V0)d𝑡. (A.12)
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We now suppose there is some FRF ℋ which relates output oscillations 𝑃 and 𝑄̃ with
input oscillations Ṽ and 𝜃 via [︂

𝑃

𝑄̃

]︂
= ℋ

[︂
𝜃

Ṽ

]︂
. (A.13)

We define a new dissipativity transformation matrix

K =

[︂
j 0
0 j

V0

]︂
. (A.14)

We use K to write S̃ = ℋ(K−1K)Ṽ𝑝. The dissipativity of the underlying system may
be tested via the following relation, where S̃ and Ṽ𝑝 are from (A.13) as previously
defined in (2.202):

Re{(KṼ𝑝)
†S̃} = Re{Ṽ†

𝑝(K
†ℋ)Ṽ𝑝}. (A.15)

By the proof logic presented in [40], the following conditions are equivalent after a
sufficient number of perturbation cycles:

K†ℋ + (K†ℋ)† ⪰ 0⇔ Re{Ṽ†
𝑝K

†S̃} ≥ 0 (A.16a)
⇔ 𝑊DE ≥ 0. (A.16b)

If instead of ℋ, the dynamics of the system were described by the admittance 𝒴 ,
(A.17) follows directly from (A.16b):

Kℋ + (Kℋ)† ⪰ 0 ⇔ M𝒴 + (M𝒴)† ⪰ 0. (A.17)

A.5 Basis Matrices of the Classical Generator
In a linear SISO system, admittance may be computed as the simple ratio of complex
inputs and complex outputs. This cannot be done in a MIMO system. Assuming
complex input (𝑢̃𝑣) and output (𝑦) vectors for the system in (2.59) are given, a
generalized admittance 𝒴 ∈ C2×2 cannot be directly inferred since (2.59) represents
four real linear equations while 𝒴 is specified with 8 coefficients (𝑎𝑖, 𝑏𝑖, 𝑖 ∈ {1, 2, 3, 4}):[︂

𝒴1 𝒴2

𝒴3 𝒴4

]︂
=

4∑︁
𝑖=1

(𝑎𝑖 + j𝑏𝑖)𝑇 𝑖. (A.18)

The system is thus underdetermined (by a factor of two). For a classical generator,
though, this is not the case. This is an important observation, because the dynamics
of a system experiencing a FO are dominated by the electromechanical response of
synchronous generators.

Proposition 1. The admittance 𝒴𝑔 of a classical generator can be uniquely specified
as the weighted sum of six basis matrices with only four real coefficients.
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Proof. It may be observed that 𝒴𝑔 in (2.135) contains no complex combination of basis
matrix 𝑇 1. Therefore, 𝒴𝑔 may be written using six basis matrix coefficients 𝑎𝑖, 𝑏𝑖,
𝑖 ∈ {2, 3, 4} via 𝒴𝑔 =

∑︀
𝑖=2...4 (𝑎𝑖 + j𝑏𝑖)𝑇 𝑖. We further observe that for (𝑎2 + j𝑏2)𝑇 2

and (𝑎3 + j𝑏3)𝑇 3, the ratios of 𝑎2/𝑏2 and 𝑎3/𝑏3 must be equal, so 𝑎2 = 𝑏2𝑎3/𝑏3.
This eliminates one coefficient. Finally, we write 𝛾 = 𝛾𝑟 + 𝑗𝛾𝑖 and observe that
𝑏2 = 𝛾𝑖 sin(𝛿) cos(𝛿) while 𝑏3 + 𝑏4 = 𝛾𝑖 sin2(𝛿) and 𝑏3 − 𝑏4 = −𝛾𝑖 cos2(𝛿). Solving this
system yields 𝑏4 = +

√︀
𝑏22 + 𝑏23 (assuming damping 𝐷 is positive). Therefore, 𝒴𝑔 may

be specified with just four coefficients: 𝑎3, 𝑎4, 𝑏2, and 𝑏3.

Corollary 9. From Proposition 1, classical generator admittance 𝒴𝑔 can be specified
with only four parameters. Thus, the inference problem min𝒴𝑔{ỹ − 𝒴𝑔ũ𝑣} represents
4 equations and 4 unknowns and is thus a “determined” problem. Accordingly, the
admittance of a classical generator can be fully inferred from terminal data.

A.6 The Effects of Resistive Energy Injections from
Transmission Networks

Given that any admittance matrix 𝒴 may be written as the complex sum of the four
weighted basis matrices, we introduce the following useful definition:

Definition 18. We assume some admittance 𝒴 may be written as 𝒴 =
∑︀4

𝑖=1 (𝑎𝑖 + j𝑏𝑖)𝑇 𝑖.
Using matrices M and Γ from Corollary 3, where Γ = (j𝛽𝑇 4)M

†, we define 𝑃 ⋆ =
Re{u† (M𝒴Γ)u} as the dissipating power for input vector u. We further define
two other types of quadratic power: resistive power 𝑃 ⋆

𝑟 and damping power 𝑃 ⋆
𝑑 ,

where 𝑃 ⋆ = 𝑃 ⋆
r + 𝑃 ⋆

𝑑 , and

• 𝑃 ⋆
r = Re

{︀
u† (︀M (︀

𝑎1𝑇 1

)︀
Γ
)︀
u
}︀

• 𝑃 ⋆
𝑑 = Re

{︀
u† (︀M (︀

j𝑏2𝑇 2 + j𝑏3𝑇 3 + j𝑏4𝑇 4

)︀
Γ
)︀
u
}︀
.

We show that the sign of the injected resistive energy associated with a transmis-
sion network can be negated if all system voltages are complex conjugated.

Theorem 8. Consider a lossy transmission network (just the network). For any
transformed voltage vector U𝑏 which yields quadratic energy Re{U†

𝑏(M(𝐸†
𝑎𝒴𝐿𝐸𝑎)Γ)U𝑏}=

𝑃 ⋆
𝑟 , there exists conjugated vector U*

𝑏 which yields an equal and opposite quadratic en-
ergy Re{U*†

𝑏 (M(𝐸†
𝑎𝒴𝐿𝐸𝑎)Γ)U*

𝑏} = −𝑃 ⋆
𝑟 , where M and Γ, with submatrices M and

Γ, yield from Corollary 3.

Proof. We split the transmission line matrix into its conductive and susceptive parts:
𝒴𝐿 = 𝒴𝐺̄ + 𝒴𝐵̄, where 𝒴𝐺̄,𝑖 = 𝐺𝑖𝑇 1 and 𝒴𝐵̄,𝑖 = 𝐵𝑖𝑇 4. We also define block ma-
trices M = j𝑇 4Γ and Γ = 𝑇 1 from M and Γ. Therefore, M

(︀
𝐸†

𝑎𝒴𝐿𝐸𝑎

)︀
Γ =

M
(︀
𝐸†

𝑎 (𝒴𝐺̄ + 𝒴𝐵̄)𝐸𝑎

)︀
. The Hermitian part (termed H) is

H = M𝐸†
𝑎(

𝒴𝐺+𝒴𝐵𝑥
2

)𝐸𝑎 + 𝐸†
𝑎(

𝒴𝐺−𝒴𝐵𝑥
2

)𝐸𝑎M
† (A.19a)

= M
(︀
𝐸†

𝑎
𝒴𝐺
2
𝐸𝑎

)︀
+
(︀
𝐸†

𝑎
𝒴𝐺
2
𝐸𝑎

)︀
M (A.19b)

= M
(︀
𝐸†

𝑎𝒴𝐺𝐸𝑎

)︀
(A.19c)
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where the matrices of (A.19b) commute since the product of Hermitian matrices is
also Hermitian. We define 𝐺𝑖𝑗 ≡ j𝐺𝑖𝑗𝑇 4, where 𝐺𝑖𝑗 is the scalar line conductance
connecting buses 𝑖 and 𝑗, and u𝑖⊂U𝑏 is the voltage element of U𝑏 associated with
bus 𝑖. From (A.19c), the quadratic power is

𝑃 ⋆
𝑟 =

𝑛∑︁
𝑖=1

u†
𝑖 (
∑︁
𝑗 ̸=𝑖

𝐺𝑖𝑗)u𝑖 −
𝑛∑︁

𝑗 ̸=𝑖

𝑛∑︁
𝑖 ̸=𝑗

u†
𝑖𝑇 4𝐺𝑖𝑗u𝑗 (A.20a)

=
∑︁
𝑖,𝑗∈ℰ

(u†
𝑖𝐺𝑖𝑗u𝑖+u†

𝑗𝐺𝑖𝑗u𝑗−u†
𝑖𝐺𝑖𝑗u𝑗−u†

𝑗𝐺𝑖𝑗u𝑖) (A.20b)

=
∑︁
𝑖,𝑗∈ℰ

(u𝑖 − u𝑗)
†𝐺𝑖𝑗 (u𝑖 − u𝑗)⏟  ⏞  

u𝑖𝑗

. (A.20c)

The quadratic quantity x†𝐺𝑖𝑗x = 𝜖 may be negated by conjugating the input (proof
trivial): x*†𝐺𝑖𝑗x

* = −𝜖. By taking U*
𝑏 as an input to Re{MU*†

𝑏 (𝐸†
𝑎𝒴𝐺𝐸𝑎)U

*
𝑏}, by

(A.20c) we thus have
∑︀

𝑖,𝑗∈ℰ u
*†
𝑖𝑗𝐺𝑖𝑗u

*
𝑖𝑗 = −𝑃 ⋆

r .
We note that U𝑏 cannot be chosen arbitrarily; it must represent a valid solution to

the linear system of (2.170a). Since U𝑏 is not itself a degree of freedom but rather a
response to some current injection, statements about the mathematical characteristics
of M𝒴𝑁Γ + (M𝒴𝑁Γ)† are difficult to prove using energy-based arguments.

We now characterize how the eigenvalues change as resistance is added to Σ𝑐.
Theorem 9. Consider N𝑐 from Σ𝑐. No amount of additional resistance to lines or
loads can cause the eigenvalues of N𝑐 to both become negative: if det(N𝑐) ≥ 0 then
trace(N𝑐) ≥ 0.

Proof. Consider some altered version of Σ𝑐 where all resistance has been removed
from the system. In this situation, 𝜆1, 𝜆2 ≥ 0 according to Theorem 3.

Consider some secondary altered version of Σ𝑐 where generators have no damping
(making them “lossless”). In this situation, matrix 𝒴𝑁 will be purely real (𝒴𝑁 ∈R2×2)
via (2.171). Therefore, assuming lossy lines, 𝜆1 = −𝜆2 ̸= 0.

All real systems exist between these two alternatives. We now consider a system
with nominal resistance and some value 𝛼 which parameterizes the amount of damping
in the system generators (𝛼 = 0 corresponds to no damping). When 𝛼 = 0, 𝜆1 =
−𝜆2 ̸= 0. As 𝛼 → ∞, then 𝜆1, 𝜆2 → R+. In between these extremes, if for some
value of 𝛼 > 0, there is 𝜆1, 𝜆2 ∈ R−, then it would imply that the addition of positive
damping causes the system to lose the ability to dissipate the quadratic energy which
the generator damping consumes. This is a contradiction, so at least one eigenvalue
must always remain positive for all levels of damping and resistance.
Remark 13. Since the DWE 𝒴𝑁 is the admittance of the network “seen” by the
source, the negative DWE −𝒴𝑁 is the admittance “seen” by the network behind the
source bus. By Theorem 9, the eigenvalues of N𝑐 = 1

2
(M𝒴𝑁Γ)+ 1

2
(M𝒴𝑁Γ)† can never

be simultaneously negative. Stated differently, the eigenvalues of −N𝑐 can never be
simultaneously positive. For this reason, the admittance seen by the network behind
the FO source can never be truly DQR.
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Appendix B

Simulation Modeling Notes

B.1 Modeling AC Power System Dynamics
The mathematical model which can be used to describe the dynamics of an AC power
system is commonly given by the DAE set

𝑥̇ = f(𝑥, 𝑧,𝑢) (B.1a)
0 = g(𝑥, 𝑧,𝑢) (B.1b)
𝑦 = h(𝑥, 𝑧,𝑢), (B.1c)

where 𝑥 is a vector of state variables, 𝑧 is a vector of algebraic variables (usually
including nodal voltage magnitude V and phase 𝜃 variables), 𝑢 is a vector of inputs
(i.e. control signals, system changes, stochastic load perturbations, etc.), and 𝑦 is a
vector of desired outputs. The following subsections describe the component models.

Algebraic Power Flow Equations

At each node in the system, the power flow equations must remain balanced for all
time. The power flow (i.e. injection) equations are stated by

𝑃𝑖 = V𝑖

∑︁
𝑘∈𝒦

V𝑘 (𝐺𝑖𝑘 cos(𝜃𝑖𝑘) + 𝐵𝑖𝑘 sin(𝜃𝑖𝑘)) (B.2)

𝑄𝑖 = V𝑖

∑︁
𝑘∈𝒦

V𝑘 (𝐺𝑖𝑘 sin(𝜃𝑖𝑘)−𝐵𝑖𝑘 cos(𝜃𝑖𝑘)) , (B.3)

where 𝒦 is the set of all nodes, and 𝐺𝑖𝑘, 𝐵𝑖𝑘 are corresponding elements from the
nodal admittance matrix.
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Synchronous Generator Equations

Power system models typically contain both 4th and 6th order machines, depending
on configuration. The 4th order generator model is stated as follows [129]:

𝛿̇ = 𝜔 (B.4)
2𝐻

𝜔0

𝜔̇ = 𝜏𝑚 − 𝜏𝑒 −𝐷𝜔 (B.5)

𝑇 ′
𝑑0𝑒̇

′
𝑞 = 𝐸𝑓 − (𝑥𝑑 − 𝑥′

𝑑)𝑖𝑑 − 𝑒′𝑞 (B.6)
𝑇 ′
𝑞0𝑒̇

′
𝑑 = (𝑥𝑞 − 𝑥′

𝑞)𝑖𝑞 − 𝑒′𝑑 (B.7)

where 𝜔 = 0 at equilibrium. The electrical torque in the airgap, 𝜏𝑒, commonly takes
the form

𝜏𝑒 = 𝜑𝑑𝑖𝑞 − 𝜑𝑞𝑖𝑑. (B.8)

The generator currents and voltages are related by[︂
𝑒𝑑
𝑒𝑞

]︂
=

[︂
𝑒′𝑑
𝑒′𝑞

]︂
−
[︂
𝑟𝑎 −𝑥′

𝑞

𝑥′
𝑑 𝑟𝑎

]︂ [︂
𝑖𝑑
𝑖𝑞

]︂
(B.9)

and the flux variables are given by

𝜑𝑑 = 𝑒′𝑞 − 𝑥′
𝑑𝑖𝑑 (B.10)

𝜑𝑞 = −𝑒′𝑑 − 𝑥′
𝑞𝑖𝑞 (B.11)

or, alternatively, 𝜑𝑑 = 𝑟𝑎𝑖𝑞 + 𝑒𝑞 and 𝜑𝑞 = −𝑟𝑎𝑖𝑑 − 𝑒𝑑. The electrical power at the
terminals of the machine are

𝑃𝑒 = 𝑒𝑑𝑖𝑑 + 𝑒𝑞𝑖𝑞 (B.12)
𝑄𝑒 = 𝑒𝑞𝑖𝑑 − 𝑒𝑑𝑖𝑞 (B.13)

We note that the electrical power at the terminal of the generator is equal to the
airgap torque minus the power losses across the stator resistance:

𝑒𝑑𝑖𝑑 + 𝑒𝑞𝑖𝑞 = (𝜑𝑑𝑖𝑞 − 𝜑𝑞𝑖𝑑)− 𝑟𝑎
(︀
𝑖2𝑞 + 𝑖2𝑑

)︀
. (B.14)

Since stator dynamics have been neglected, 𝜑̇𝑑 = 𝜑̇𝑞 = 0, and the electrical torque in
the airgap is assumed equal to the electrical power in the airgap.
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The 6th order generator model is stated as follows [129]:

𝛿̇ = 𝜔 (B.15)
2𝐻

𝜔0

𝜔̇ = 𝜏𝑚 − 𝜏𝑒 −𝐷𝜔 (B.16)

𝑇 ′
𝑑𝑜𝑒̇

′
𝑞 = 𝐸𝑓 − (𝑥𝑑 − 𝑥′

𝑑 − 𝛾𝑑)𝑖𝑑 − 𝑒′𝑞 (B.17)
𝑇 ′
𝑞𝑜𝑒̇

′
𝑑 = (𝑥𝑞 − 𝑥′

𝑞 − 𝛾𝑞)𝑖𝑞 − 𝑒′𝑑 (B.18)
𝑇 ′′
𝑑𝑜𝑒̇

′′
𝑞 = 𝑒′𝑞 − 𝑒′′𝑞 − (𝑥′

𝑑 − 𝑥′′
𝑑 + 𝛾𝑑)𝑖𝑑 (B.19)

𝑇 ′′
𝑞𝑜𝑒̇

′′
𝑑 = 𝑒′𝑑 − 𝑒′′𝑑 + (𝑥′

𝑞 − 𝑥′′
𝑞 + 𝛾𝑞)𝑖𝑞, (B.20)

where

𝛾𝑞 = 𝑇 ′′
𝑞𝑜𝑥

′′
𝑞

𝑥𝑞 − 𝑥′
𝑞

𝑇 ′
𝑞𝑜𝑥

′
𝑞

(B.21)

𝛾𝑑 = 𝑇 ′′
𝑑𝑜𝑥

′′
𝑑

𝑥𝑑 − 𝑥′
𝑑

𝑇 ′
𝑑𝑜𝑥

′
𝑑

. (B.22)

The voltages and currents are related via[︂
𝑣𝑑
𝑣𝑞

]︂
=

[︂
𝑒′′𝑑
𝑒′′𝑞

]︂
−
[︂

𝑟𝑎 −𝑥′′
𝑞

𝑥′′
𝑑 𝑟𝑎

]︂ [︂
𝑖𝑑
𝑖𝑞

]︂
. (B.23)

Again, electrical power at the terminals of the machine are

𝑃𝑒 = 𝑒𝑑𝑖𝑑 + 𝑒𝑞𝑖𝑞 (B.24)
𝑄𝑒 = 𝑒𝑞𝑖𝑑 − 𝑒𝑑𝑖𝑞. (B.25)

The electrical torque in the airgap (again approximated by the electrical power in the
airgap) is given via

𝜏𝑒 = 𝜑𝑑𝑖𝑞 − 𝜑𝑞𝑖𝑑 (B.26)
= 𝑒𝑑𝑖𝑑 + 𝑒𝑞𝑖𝑞 + 𝑟𝑎

(︀
𝑖2𝑞 + 𝑖2𝑑

)︀
, (B.27)

where

𝜑𝑑 = 𝑒′′𝑞 − 𝑥′′
𝑑𝑖𝑑 (B.28)

𝜑𝑞 = −𝑒′′𝑑 − 𝑥′′
𝑞 𝑖𝑞. (B.29)

In both generator cases, 𝑒𝑑 = V sin(𝛿 − 𝜃) and 𝑒𝑞 = V cos(𝛿 − 𝜃). The interaction
between the generator model and its various controllers is shown in Fig. B-1.
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Figure B-1: Generator interacting with its controllers and the network. The (6th

order) generator + controller system has a total of 15 differential states, with time
constants varying from 0.01s to 50s.

Figure B-2: Automatic Voltage Regulator

Generator Automatic Voltage Regulator (AVR) Equations

The AVR regulates the terminal voltage of the generator. The relevant differential
equations are given by

𝑇𝑟𝑉̇𝑓 = 𝑉t − 𝑉𝑓 (B.30)

𝑇𝑎𝐸̇𝑓 = 𝐾𝑎𝑥𝑡 − 𝐸𝑓 (B.31)
𝑥̇𝑖 = 𝑥𝑒 − 𝑥𝑡 (B.32)

and the algebraic equations are stated as

𝑥𝑒 = 𝑉ref + 𝑉PSS − 𝑉𝑓 (B.33)
𝑇𝑏𝑥𝑡 = 𝑇𝑐𝑥𝑒 + 𝑥𝑖. (B.34)

The transfer function is given below.

Generator Power System Stabilizer (PSS) Equations

The power system stabilizer damps out unstable frequency modes. The relevant
differential equations are given by

𝑇𝑤𝑥̇𝑤 = 𝑉𝑤 (B.35)
𝑥̇𝑝 = 𝑉𝑤 − 𝑉𝑝 (B.36)
𝑥̇𝑞 = 𝑉𝑝 − 𝑉pss, (B.37)
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Figure B-3: Power System Stabilizer

Figure B-4: Turbine Governor

and the algebraic equations are stated as

𝑉𝑤 = 𝜔𝐾PSS − 𝑥𝑤 (B.38)
𝑇2𝑉𝑝 = 𝑇1𝑉𝑤 + 𝑥𝑝 (B.39)

𝑇4𝑉PSS = 𝑇3𝑉𝑝 + 𝑥𝑞. (B.40)

The transfer function is given below.

Generator Turbine Governor (TG) Equations

The turbine governor regulates generator power output as a function of terminal
frequency. The differential equations are given by

𝑇𝑠𝑥̇1 = 𝜏ref −
1

𝑅
𝜔 − 𝑥1 (B.41)

𝑇𝑐𝑥̇2 =

(︂
1− 𝑇3

𝑇𝑐

)︂
𝑥1 − 𝑥2 (B.42)

𝑇5𝑥̇3 =

(︂
1− 𝑇4

𝑇5

)︂(︂
𝑥2 +

𝑇3

𝑇𝑐

𝑥1

)︂
− 𝑥3 (B.43)

and the only algebraic is given by

𝜏𝑚 = 𝑥3 +
𝑇4

𝑇5

(︂
𝑥2 +

𝑇3

𝑇𝑐

𝑥1

)︂
. (B.44)

The transfer function is given below.

Algebraic “ZIP” Load Equations

The instantaneous active and reactive power consumed by the loads in the network are
often modeled as functions of the nodal voltage magnitude V relative to its nominal
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voltage V0:

𝑃 = 𝑃0(1 + 𝑢𝑝)

(︃
𝐾𝑍

(︂
V

V0

)︂2

+ 𝐾𝐼

(︂
V

V0

)︂1

+ 𝐾𝑃

(︂
V

V0

)︂0
)︃

(B.45)

𝑄 = 𝑄0(1 + 𝑢𝑞)

(︃
𝐾𝑍

(︂
V

V0

)︂2

+ 𝐾𝐼

(︂
V

V0

)︂1

+ 𝐾𝑃

(︂
V

V0

)︂0
)︃
. (B.46)

The variables 𝑢𝑝 and 𝑢𝑞 can codify the stochastic variation of the loads via an
Ornstein-Uhlenbeck random process [66]:

𝜏 𝑢̇𝑝 = −𝑢𝑝 + 𝜂𝑖 (B.47)
𝜏 𝑢̇𝑞 = −𝑢𝑞 + 𝜂𝑖, (B.48)

where 𝜂𝑖 are IID Gaussian random variables.

Linearization Analysis

Often times, it is helpful to linearize the power system DAE model (B.1) in order to
directly relate input and output perturbations. We perform this linearization by first
computing Jacobians

∆𝑥̇ = [f𝑥] ∆𝑥+ [f𝑦] ∆𝑧 + [f𝑢] ∆𝑢 (B.49)
0 = [g𝑥] ∆𝑥+ [g𝑦] ∆𝑧 + [g𝑢] ∆𝑢 (B.50)

∆𝑦 = [h𝑥] ∆𝑥+ [h𝑦] ∆𝑧 + [h𝑢] ∆𝑢. (B.51)

Next, we eliminate the algebraic variable perturbations via Kron reduction:

∆𝑧 = − [g𝑦]
−1 ([g𝑥] ∆𝑥+ [g𝑢] ∆𝑢) . (B.52)

Substituting, we have

∆𝑥̇ =
[︀
fx − fyg

−1
y gx

]︀⏟  ⏞  
A

∆𝑥+
[︀
fu − fyg

−1
y gu

]︀⏟  ⏞  
B

∆𝑢 (B.53)

∆𝑦 =
[︀
hx − hyg

−1
y gx

]︀⏟  ⏞  
C

∆𝑥+
[︀
h𝑢 − h𝑦g

−1
𝑦 g𝑢

]︀⏟  ⏞  
D

∆𝑢. (B.54)

In the Laplace domain, the linearized input and output perturbations are thus related
by 𝑦(𝑠) = (C(𝑠1−A)−1B + D)𝑢̃(𝑠).
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B.2 Initialization and Modeling of DC Microgrid Dy-
namics in the Time Domain

Initialization

To initialize the DC microgrid network in Fig. 3-6, for example, we assume steady
state (𝜔 = 0) operation. We then order the network such that buses 1 through 𝑛𝑠 are
source buses while buses 𝑛𝑠+1 through 𝑛 are load buses. We define 𝑌𝑙 as the diagonal
matrix of line admittances, where each diagonal element is 1/𝑟𝑖𝑗, and we define 𝑌𝑠 as
the diagonal matrix of shunt (i.e. load) admittances, where each diagonal element is
𝐷2/𝑅 (i.e. the negative of incremental resistance (3.40)). We further define the real
matrix

𝑌𝑏 = 𝐸𝑇𝑌𝑙𝐸 + 𝑌𝑠 (B.55)

as the nodal admittance matrix. Next, we define V𝑠 as the vector of known source
voltages, V𝑙 as the vector of unknown load voltages, and I𝑠 as the vector of unknown
current injections at the sources. Partitioning (B.55), we therefore have[︂

𝑌𝑏1 𝑌𝑏2

𝑌𝑏3 𝑌𝑏4

]︂ [︂
V𝑠

V𝑙

]︂
=

[︂
I𝑠
0

]︂
. (B.56)

By re-arranging the bottom set of equations from (B.56), the unknown steady state
voltages may be computed as

V𝑙 = −𝑌 −1
𝑏4 𝑌𝑏3V𝑠. (B.57)

Time Domain Simulation

In order to simulate the small-signal dynamics of the network in Fig. 3-6, we first
initialized the system via (B.57). Using the calculated equilibrium, we defined the
differential algebraic equation (DAE) set

𝑥̇ = A𝑥+ B𝑢 (B.58)
0 = 𝐸𝑇𝑥𝑙 + 𝑥𝑠, (B.59)

where A encodes the dynamics of the buck converters, filter capacitors, and network
lines, and B processes the inputs from the voltage sources 𝑢. To enforce conservation
of currents, (B.59) ensures the sum of line currents 𝑥𝑙 and shunt currents 𝑥𝑠 are equal
to 0 at each node.
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Appendix C

Dynamic Phasor Modeling

In the modeling and analysis of AC power systems, phasors are ubiquitous. While
invaluable in steady state analysis, an extension of the phasor concept, known as
the dynamic phasor, is very useful in the dynamic modeling of electromechanical
machines, inverters, and microgrid networks. To motivate the dynamic phasor, we
consider two three-phase voltage and current (injection or line flow) vectors:

𝑣(𝑡) =

⎡⎣ 𝑣𝑎(𝑡)
𝑣𝑏(𝑡)
𝑣𝑐(𝑡)

⎤⎦ , 𝑖(𝑡) =

⎡⎣ 𝑖𝑎(𝑡)
𝑖𝑏(𝑡)
𝑖𝑐(𝑡)

⎤⎦ , (C.1)

where each signal is assumed to be operate “around” equilibrium frequency 𝜔0. In
order to construct a dynamic phasor representation of (C.1), there are a variety of
alternatives, such as the amplitude-invariant Clarke transform [80]. In this thesis,
we use the standard (amplitude-invariant) Park Transform [137]:

T𝑝(𝑡) =
2

3

⎡⎣ cos(𝜔0𝑡) cos(𝜔0𝑡− 2𝜋
3

) cos(𝜔0𝑡 + 2𝜋
3

)
− sin(𝜔0𝑡) − sin(𝜔0𝑡− 2𝜋

3
) − sin(𝜔0𝑡 + 2𝜋

3
)

1
2

1
2

1
2

⎤⎦ , (C.2)

such that ⎡⎣ 𝑉𝑑(𝑡)
𝑉𝑞(𝑡)
𝑉0(𝑡)

⎤⎦ = T𝑝(𝑡)𝑣(𝑡),

⎡⎣ 𝐼𝑑(𝑡)
𝐼𝑞(𝑡)
𝐼0(𝑡)

⎤⎦ = T𝑝(𝑡)𝑖(𝑡), (C.3)

where the “zero” sequence term is 0 under balanced operation. We also note that in
quasi-stationary steady state, the real-valued 𝑑 and 𝑞 axis signals are constant, i.e.
𝑉̇𝑑(𝑡) = 𝑉̇𝑞(𝑡) = 0, etc. We use these signals to define dynamic phasors:

𝑉𝑑𝑞(𝑡) = 𝑉𝑑(𝑡) + j𝑉𝑞(𝑡)

𝐼𝑑𝑞(𝑡) = 𝐼𝑑(𝑡) + j𝐼𝑞(𝑡).
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We now make the important distinction between so-called symmetrical (also referred
to as isotropic, or rotational-invariant) and non-symmetric systems [80]. As the name
implies, symmetrical systems present balanced three-phase impedances to the grid.
Such systems include balanced RLC components, transformers, induction machines,
and round-rotor synchronous machines. Asymmetric systems include unbalanced
RLC components, and salient pole synchronous machines [80]. In these cases, the
impedance seen by the 𝑑 and 𝑞 axis voltages is a function of the reference frame.
When dealing with symmetrical components, it is convenient to use dynamic phasors
to define voltage and current signals which rotate in the complex plane:

𝑉 (𝑡) = 𝑉𝑑𝑞(𝑡)𝑒
j𝜔0𝑡 (C.4)

𝐼(𝑡) = 𝐼𝑑𝑞(𝑡)𝑒
j𝜔0𝑡 (C.5)

These signals can conveniently be used to analyze the impedance presented by a
symmetrical RL line connecting buses 𝑗 and 𝑘:

𝐿
d

d𝑡
𝐼𝑗𝑘(𝑡) = 𝑉𝑗(𝑡)− 𝑉𝑘(𝑡)−𝑅𝐼𝑗𝑘(𝑡) (C.6)

Substituting in (C.4)-(C.5),

𝐿
(︁ d

d𝑡
𝐼𝑑𝑞,𝑗𝑘(𝑡)

)︁
𝑒j𝜔0𝑡 = 𝑉𝑑𝑞,𝑗(𝑡)𝑒

j𝜔0𝑡 − 𝑉𝑑𝑞,𝑘(𝑡)𝑒j𝜔0𝑡 −𝑅𝐼𝑑𝑞,𝑗𝑘(𝑡)𝑒j𝜔0𝑡−𝐿𝑗𝜔0𝐼𝑑𝑞,𝑗𝑘(𝑡)𝑒j𝜔0𝑡,

which can be simplified by (i) multiplying through by 𝑒−j𝜔0𝑡, (ii) breaking the problem
down into its real and imaginary parts, and (iii) dropping the “of time” notation:

𝐿
d

d𝑡
𝐼𝑑,𝑗𝑘 = 𝑉𝑑,𝑗 − 𝑉𝑑,𝑘 −𝑅𝐼𝑑,𝑗𝑘 + 𝐿𝜔0𝐼𝑞,𝑗𝑘 (C.7)

𝐿
d

d𝑡
𝐼𝑞,𝑗𝑘 = 𝑉𝑞,𝑗 − 𝑉𝑞,𝑘 −𝑅𝐼𝑞,𝑗𝑘 − 𝐿𝜔0𝐼𝑑,𝑗𝑘. (C.8)

The associated transfer function relating inputs (𝑑 and 𝑞 axis voltage differentials)
and outputs (𝑑 and 𝑞 axis current flows) is given by[︂

𝐼𝑑,𝑗𝑘
𝐼𝑞,𝑗𝑘

]︂
=

[︂
𝐿𝑠 + 𝑅 −𝐿𝜔0

𝐿𝜔0 𝐿𝑠 + 𝑅

]︂−1 [︂
𝑉𝑑,𝑗 − 𝑉𝑑,𝑘

𝑉𝑞,𝑗 − 𝑉𝑞,𝑘

]︂
, (C.9)

where 𝑋0 = 𝐿𝜔0 is a common simplification. Since this system is truly linear, the
admittance in (C.9) is capable of relating the full (rather than small signal) voltage
and current signals. When dealing with nonlinear systems, it becomes helpful to
define small signal perturbations 𝑣𝑑(𝑡), 𝑣𝑞(𝑡), 𝑖𝑑(𝑡), 𝑖𝑞(𝑡) which are deviations away
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from equilibrium points 𝑉𝑑,0, 𝑉𝑞,0, 𝐼𝑑,0, 𝐼𝑞,0:

𝑉𝑑(𝑡) = 𝑉𝑑,0 + 𝑣𝑑(𝑡) (C.10)
𝑉𝑞(𝑡) = 𝑉𝑞,0 + 𝑣𝑞(𝑡) (C.11)
𝐼𝑑(𝑡) = 𝐼𝑑,0 + 𝑖𝑑(𝑡) (C.12)
𝐼𝑞(𝑡) = 𝐼𝑞,0 + 𝑖𝑞(𝑡). (C.13)

The small signal admittance associated with an RL line is given by (C.9) exactly:[︂
𝑖𝑑,𝑗𝑘
𝑖𝑞,𝑗𝑘

]︂
=

[︂
𝐿𝑠 + 𝑅 −𝐿𝜔0

𝐿𝜔0 𝐿𝑠 + 𝑅

]︂−1 [︂
𝑣𝑑,𝑗 − 𝑣𝑑,𝑘
𝑣𝑞,𝑗 − 𝑣𝑞,𝑘

]︂
. (C.14)
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