
University of Vermont
CMPE 5990 (Fall 🍃 🍃 2025)

Machine Learning for Engineering Sciences

Notes and Homeworks∗

β-Version 1.42: October 16, 2025

We all stand on the shoulders of giants: mathematical formulations in this document are bor-
rowed extensively from [1, 2, 3, 4]. This is a “living document” which will be updated throughout
the semester. Assignments: If there is a 4 next to the assignment in the following list, then all
problems have been assigned. If there is an 7, then the assignment has not yet been finalized.

• There are 2 HW0 problems assigned 4

– Due: Th, Sept 4, 11PM

• There are 2 HW1 problems assigned 4

– Due: Th, Sept 11, 11PM

• There are 6 HW2 problems assigned 4

– Due: Thu, Sept 18, 11PM

• There are 5 HW3 problems assigned 4

– Due: Thu, Sept 25, 11PM

• There are 5 HW4 problems assigned 4

– Due: Thu, Oct 2, 11PM

• There are 5 HW5 problems assigned 4

– Due: Thu, Oct 9, 11PM

• There are 6 HW6 problems assigned 4

– Due: Thu, Oct 23, 11PM

• There are 2 HW7 problems assigned 4

– Due: Thu, Oct 30, 11PM

• There are 6 HW8 problems assigned 4

– Due: Thu, Nov 6, 11PM

• There are 5 HW9 problems assigned 4

– Due: Sat, Nov 13, 11PM

• There are 5 HW10 problems assigned 4

– Due: Thu, Nov 20, 11PM

• There are 0 HW11 problems assigned 4

– Due: Thu, Dec 4, 11PM

∗This document was written by Sam Chevalier. Credit to Yoonki Hong and Eren Tekeler for proof reading
and correctness verification. Credit to Safwan Wshah for general inspiration and some figures.

1

Contents
1 Introduction and Background 5

1.1 A Brief History of... AI . 5
1.2 And Now: A Big, Annoying Notation Table . 10
1.3 Linear Algebra Review . 12
1.4 Optimization Review . 17

2 Learning Theory Basics 25
2.1 Data Generating Distributions . 25
2.2 Maximum Likelihood Estimation (MLE) . 27
2.3 Maximum A Posteriori (MAP) Estimation . 31
2.4 Regression vs Classification . 33
2.5 Discriminative vs Generative Classifier Models . 34

2.5.1 Naive Bayes Classifiers . 34
2.6 Entropy & Cross-Entropy . 36
2.7 Logistic and Softmax Functions . 39
2.8 The Bias-Variance Conundrum . 42

2.8.1 Overfitting vs Underfitting . 42
2.8.2 Occam’s Razor . 43
2.8.3 Model Regularization . 43
2.8.4 Inductive Bias . 43
2.8.5 No Free Lunch Theorem . 43
2.8.6 Data-Splitting, Early Stopping, and Cross-Validation 44

3 Unsupervised Learning 46
3.1 K-Means Clustering . 46

3.1.1 Selection of K . 50
3.1.2 Computational Complexity of K-Means . 50
3.1.3 K-Means++ . 50

3.2 Principal Component Analysis . 52
3.2.1 Singular Value Decomposition . 52
3.2.2 Low Rank Approximation and the Eckart–Young Theorem 56
3.2.3 Principal Component Analysis & the SVD . 59
3.2.4 PCA Applications: the Netflix Completion Prize, Eigenfaces, Compressed

Optimization, and Clustering . 64

4 Linear Regression 67
4.1 A Gentle Introduction . 67
4.2 Least Squares “and All His Friends” . 68
4.3 Weighted Least Squares . 69
4.4 Linear Systems: Square, Overdetermined, and Underdetermined 70
4.5 Analytically Solving Least Squares . 73

4.5.1 QR Decomposition . 74
4.6 Regularized Linear Regression . 77

4.6.1 Ridge Regression (L2 Norm Regularization) 77
4.6.2 Lasso Regression (L1 Norm Regularization) 79
4.6.3 Elastic Net Regression (L2 and L1 Norm Regularization) 85

2

https://en.wikipedia.org/wiki/Death_and_All_His_Friends

4.7 Gradient-Based Solutions for Least Squares . 85
4.7.1 Feature Normalization . 87
4.7.2 Accelerating Gradient Computations with Batching 89
4.7.3 Learning Rate Decay . 90
4.7.4 Faster Gradient-Based Optimization Routines 90

5 Nonlinear Regression 96
5.1 Polynomial Regression . 97
5.2 Sparse Identification of Nonlinear Dynamics (SINDy) 99

5.2.1 Nonlinear Dynamics and Time Series Data 100
5.2.2 SINDy Regression . 101

6 Classification Methods 105
6.1 K-Nearest Neighbors . 105

6.1.1 K-Nearest Neighbors Drawbacks . 106
6.2 Logistic Regression . 107

6.2.1 Binary Classification . 107
6.2.2 Training Logistic Regression Models . 109
6.2.3 Probabilistic Decision Boundaries . 111
6.2.4 Nonlinear Decision Boundaries . 112
6.2.5 Multiclass Classification . 113

6.3 Support Vector Machines . 114
6.3.1 Hard Margin Classifier . 115
6.3.2 Soft Margin Classifier . 116
6.3.3 The Dual SVM . 117
6.3.4 The Kernel Trick . 119
6.3.5 Mapping a Kernelized SVM Back to a Classification Prediction 122

6.4 Classification Accuracy Metrics . 124

7 Trees and Forests 127
7.1 Decision Trees (DTs) . 127

7.1.1 DT Regularization . 128
7.1.2 DT with Continuous Features . 129
7.1.3 Regression Trees . 129
7.1.4 DT Advantages and Disadvantages . 129

7.2 Ensemble Methods . 130
7.3 Bagging . 131
7.4 Random Forests . 132
7.5 Boosting Methods . 132

7.5.1 AdaBoost . 132
7.5.2 Gradient Boosting . 134
7.5.3 XGBoost and LightGBM . 134

8 Neural Networks 136
8.1 Multilayer Perceptron . 136
8.2 Neural Network Activation Functions . 138
8.3 Backpropagation . 140

3

9 Machine Learning Verification 145
9.1 Interval Bound Propagation . 145
9.2 Neural Network Convex Relaxations . 145
9.3 Branch and Bound . 145

10 Appendix 146
10.1 Optimal PCA Data Imputation . 146
10.2 Back-Substitution . 146

4

1 Introduction and Background

1.1 A Brief History of... AI

The histories of Machine Learning (ML) and Artificial Intelligence (AI) are closely tied to the
histories of computation, mathematical completeness, and algorithmic complexity. This story
may be told in many ways, but here is Sam’s version (strongly influenced by [5, 6, 7, 8, 9]).

Figure 1: Elements.

We begin 2300 years ago, with the Greek mathematician Euclid. His
famous treatise on Geometry, the Elements, is one of the most reproduced
books of all time. In this treatise, Euclid offers five famous postulates:

1. A straight line can join any two points.
2. Any straight line can be extended indefinitely.
3. Given any straight line, a circle can be drawn having the segment as

radius and one endpoint as center.
4. All Right Angles are congruent.
5. If two lines are drawn which intersect a third in such a way that the

sum of the inner angles on one side is less than two Right Angles,
then the two lines inevitably must intersect each other on that side if
extended far enough. ?

This set of postulates forms the foundations of an Axiomatic System; in such a system, the
initial set of true axioms are used to logically deduce other, more complex, yet less obvious, truths
(we call them theorems). While Euclid’s first four postulates are rock solid, the fifth postulate
has a problem. For starters, it is less self-evident than the first four; even Euclid himself tried
to avoid using the 5th postulate in his proofs. Despite its squishiness, it still “feels” true, and
generations mathematicians after Euclid attempted to rigorously prove the fifth postulate from
the preceding four. All tried, and failed. By 1763, there were at least 28 erroneous proofs published
in the literature.

Farkas Bolyai, a famous Hungarian mathematician, spent many years of his life attempting
to prove the parallel line conjecture. When he learned that his son, János Bolyai, began to also
work on the topic, his father passionately tried to dissuade him:

“You must not attempt this approach to parallels. I know this way to its very end. I
have traversed this bottomless night, which extinguished all light and joy of my life.
I entreat you, leave the science of parallels alone... I though I would sacrifice myself
for the sake of the truth. I was ready to become a martyr who would remove the flaw
from geometry and return it purified to mankind. I accomplished monstrous, enormous
labors; my creations are far better than those of others and yet I have not achieved
complete satisfaction. For here it is true that si paullum a summo discessit, vergit ad
imum (if it’s failed to make the grade, even by a smidgen, it might as well be the worst).
I turned back when I saw that no man can reach the bottom of this night. I turned back
unconsoled, pitying myself and mankind. I have traveled past all reefs of this infernal
Dead Sea and have always come back with broken mast and torn sail. The ruin of
my disposition and my fall date back to this time. I thoughtlessly risked my life and
happiness–aut Caesar aut nihil (either Caesar or nothing).”

Very soon after, though, János, Nikolai Ivanovich Lobachevsky, and even Carl Friedrich

5

https://people.math.harvard.edu/~ctm/home/text/class/harvard/113/97/html/euclid.html

Gauss all simultaneously∗ discovered non-Euclidean geometry (e.g., hyperbolic geometry, el-
liptic geometry, Riemannian geometry). In many of these new geometries, Euclid’s fifth postulate
simply isn’t true; since reality is not inherently Euclidean, it is no surprise that the fifth postulate
gave mathematicians so much trouble.

Figure 2: Tower of Babel by
M. C. Escher [7].

As non-Euclidean geometry was shaking the foundations of
mathematics, there was another emerging problem. In 1891, Ger-
man mathematician and set theory founder Georg Cantor pub-
lished his diagonalization proof, where he showed that there are
more real numbers between 0 and 1, than there are natural numbers.
Since both are infinitely large, we are left with an odd conclusion:
not all infinities are the same size. Of course, this result defies
intuition.

With these unsettling upheavals, the end of the 19th century wit-
nessed a fracturing of the mathematical community. On one side,
the intuitionists (lead by Brouwer) rejected the paradoxes emerg-
ing from set theory. On the other, the formalists believed that
axiomatic rigor, grounded in set theory, would rescue the drowning
field of pure math.

Lead by the famous German mathematician David Hilbert,
the formalists embraced set theory and generally believed that a
sure-footed and properly executed axiomatic system of formalized
logic and structure could reveal all mathematical truths. To the
intuitionists, Hilbert declared, “No on shall expel us from the
paradise that Cantor created.” Many were skeptical of this approach, including Emil du Bois-
Reymond. He believed there are certain “transcendent” truths which are beyond what humans
can know; he employed the Latin phrase “ignoramus et ignorabimus”, meaning “we do not know
and will not know”. In response, David Hilbert famously said, in 1930, “Wir müssen wissen – wir
werden wissen.” (In English: “We must know – we will know”; these words are now on his
grave). Hilbert’s famous “Foundations of Geometry” treatise, published in 1902, set out to do just
this.

In 1901, Bertrand Russell found a paradox at the heart set theory. Some sets are members of
themselves (i.e., the set of all sets). Some sets are not (i.e., the set of all UVM students). “Russell’s
paradox” considers R: “the set of all sets that don’t contain themselves.” Does R contain itself?
Either answer is wrong, leading to an obvious paradox. Practically, we can think of a small village
with a barber. This barber will cut the hair of every person who doesn’t cut their own hair. So,
who cuts the barber’s hair...?

The heart of the problem is related to the concept of self-reference, especially recursive
self-reference. Douglas Hofstadter refers to the complexity emerging from such recursive self-
referential systems as a consequence of “strange loops” (see Gödel, Escher, Bach [7]). To overcome
these challenges, the formalists wanted a stronger axiomatic system which rooted out self-reference
altogether. In 1913, Bertrand Russell and Alfred North Whitehead published the third volume
of their monumental, and massive (2000 pages!), Principia Mathematica [10]. After 379 pages,
they were able to finally prove that “1+1=2”, which is an “occasionally useful” result, they re-
marked [5]. In Principia Mathematica, they introduce the “theory of types”, a hierarchy of sets
which completely disallows self-reference (i.e., only a higher-order set can refer to a lower-order

∗Farkas Bolyai on the budding co-discoveries of non-Euclidean geometry: “When the time is ripe for certain things,
these things appear is different places in the manner of violets coming to light in early spring.” [7]

6

https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/foundations-mathematics-hilberts-formalism-vs-brouwers-intuitionism

set).
Pleased by this progress, at the 1928 International Congress of Mathematicians, David Hilbert

posed three problems that must be answered to ensure Math was was a truly bulletproof fortress:
1. Is Math complete? [Can you prove every true statement?]
2. Is Math consistent? [Is it free of contradictions?]
3. Is Math decidable? [Is there a step-by-step algorithm which can determine if a

theorem or statement follows from the axioms?] This is also known as the Entschei-
dungsproblem, which is German for the “decision problem”.

In 1931, a young logician named Kurt Gödel published On Formally Undecidable Propositions
of Principia Mathematica and Related Systems I [11]. It contains two Earth shattering theorems:

I. In any sufficiently powerful formal system (i.e., conventional Math), there are statements
which can neither be proved nor disproved.

II. Any sufficiently strong formal system cannot prove its own consistency.

And with that, mathematics was show to be incomplete: there are truths that cannot be
proven. Furthermore, the consistency of math cannot be shown by math itself; we need a more
powerful system; but that more powerful system can only be shown to be consistent by an even
more power system, and so on. While mathematical completeness was shown to be a pipe dream,
Entscheidungsproblem problem was still up for debate. If math was decidable, then at the very
least, the things that can be proven true, can be done so with algorithmic ease (once the algorithm
is discovered, or course).

Figure 3: A gorgeous depiction, by Hofstadter [7], of
provable and unprovable theorem space.

Alan Turing then went a step farther. To
do so, Turing famously introduced the concept
of a Turing machine, and he showed that
this machine can compute anything that is com-
putable. While this sounds like a trivial state-
ment to you and me, (non-human) computers
did not exist yet, so these concepts were highly
abstract. Famously, Turning then formulated
the halting problem as an equivalent version
of the decidability problem: the Turing ma-
chine can compute anything, so if we can a pri-
ori predict if it will halt when executing a pro-
gram, then we can solve any decidability prob-
lem. As an example, the famously unsolved
Riemann hypothesis asks: “Do all nontriv-
ial zeros of the Riemann zeta function line on
the 0.5+jω line?” To solve this problem, we can just design a program which searches for a solution
to the zeta function off the 0.5 + jω line; if this problem halts, then we can solve the Riemann
hypothesis, since we know it has found a solution. A similar approach could be used to solve
other problems, like the twin prime conjecture [6].

In 1936, in On computable numbers, with an application to the Entscheidungsproblem [12], Alan
Turing showed that the halting problem cannot be solved. As demonstrated in proof-by-
contradiction by Christopher Strachey, let’s assume halts(f) is a function which can predict if

7

https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Halting_problem

program f will halt. Let’s now run a new program, g:

g =

{
loop, halts(g) = true
halt, halts(g) = false.

(1.1)

This, of course, leads to a logical contradiction, since g will neither halt, nor endlessly loop.
The function halts(f), therefore, cannot exist, because it leads to impossible situations. Thus,
mathematics is fundamentally undecidable. Sometimes, to know if a program will halt, we
just need to run it, potentially forever†. Once again, self-referential recursive routines brought
mathematics, and in particular, its decidability, cowering to its knees.

To overcome the Entscheidungsproblem, the Turing machine was naturally born. With this
invention, Alan Turing is considered the father of computer science; however, he was not the first to
hypothesize about the existence of general purpose computation. That prize goes to Ada Lovelace.
In 1834, the English polymath Charles Babbage proposed and designed his Analytical Engine
(sadly, it was never actaully built). This was a loom-like mechanical device capable of being
programmed with punch cards. About this device, Ada Lovelace said, “The Analytical Engine
weaves algebraic patterns just as the Jacquard loom weaves flowers and leaves.” Lovelace wrote the
first (ever) “program” which could run on this engine (a program for computing Bernoulli numbers).
More fundamentally, Lovelace noticed the power of the Analytic Engine to provide more than just
calculation; such an engine could also provide general-purpose computation:

“Ada saw something that Babbage in some sense failed to see. In Babbage’s world his
engines were bound by number...What Lovelace saw...was that number could represent
entities other than quantity. So once you had a machine for manipulating numbers,
if those numbers represented other things, letters, musical notes, then the machine
could manipulate symbols of which number was one instance, according to rules. It is
this fundamental transition from a machine which is a number cruncher to a machine
for manipulating symbols according to rules that is the fundamental transition from
calculation to computation—to general-purpose computation—and looking back
from the present high ground of modern computing, if we are looking and sifting history
for that transition, then that transition was made explicitly by Ada in [1843].” [13]

As formal mathematics crumbled and new theories and methods of computation were emerging,
a young (12 years old, to be exact) prodigy named Walter Pitts was reading Bertrand Russell’s
Principia Mathematica in the public libraries of Detroit [10]; he even managed to find several
“problems” in the work, which he pointed out to Bertrand Russell in a letter. At the age of
25, Walter Pitts teamed up with Warren McCulloch, a neuropsychologist and cybernetician.
Both Pitts and McCulloch were strongly influenced by Russell’s attempt to use axiomatic logic to
derive truths, and by Turing’s new universal Turing machine, which could compute any computable
function. “McCulloch became convinced that the brain was just such a machine—one which uses
logic encoded in neural networks to compute. Neurons, he thought, could be linked together by

†“What had he (John von Neumann) seen? What had the computer shown him? Had he experienced a similar
revelation to mine? There was no way for me to know without running his code. Because that is a basic computational
truth that very few people are aware of, and that Turing proved mathematically: there is simply no form of knowing
what a particular string of code will do unless you run it. You cannot know by looking at it. Even the simplest
programs can lead to fabulous complexity. And the opposite is also true: you can erect a sprawling, many-leveled
tower of ciphers that produce nothing but sterility, a barren unchanging landscape where no water will ever fall. So
I will go to my grave with that knowledge withheld from me, and it tortures my curiosity.” – Benjamin Labatut,
speaking on behalf of Nils Aall Barricelli in The Maniac.

8

the rules of logic to build more complex chains of thought, in the same way that the Principia
linked chains of propositions to build complex mathematics.” [9]. McCulloch and Pitts laid out
these ideas in their seminal work, A Logical Calculus of Ideas Immanent in Nervous Activity [14].
This was the first work to model the artificial neural network, and they showed that this model
could theoretically compute all logical functions.

In 1945, John von Neumann published “First Draft of a Report on the EDVAC,” which
proposed the first general purpose binary computing machine; without any rewiring, this machine
could operate as a universal Turing machine. “To accomplish this, von Neumann suggested mod-
eling the computer after Pitts and McCulloch’s neural networks. In place of neurons, he suggested
vacuum tubes, which would serve as logic gates, and by stringing them together exactly as Pitts and
McCulloch had discovered, you could carry out any computation.” [9] The only paper referenced in
this report was the McCulloch and Pitts’ Logical Calculus [14].

And the rest is history. Modern Neural Networks architectures have unleashed the unbri-
dled power of Machine Learning, yielding some of humanity’s first truly Artificially Intelligent
learning systems. The history of Machine Learning, as we have now seen, is closely linked to the
history of computation; and computation primarily emerged as a theoretical tool for analyzing
the crumbling formal mathematical systems of the 1800s.

There are other interesting facets to explore, of course, but we’ll end our story here. Despite
passing through two “AI winters” (i.e., 1974–1980 and 1987–2000, where progress and interest in
the field of AI seriously slumped), Artificial Intelligence today is booming, and its story is clearly
not over. AI is not a lifeless technology that came to us from beyond the void; its very roots
are inextricably fused with humanity’s struggle to calculate, to compute, to learn, and to know.
These roots also highlight how people have carried these complex ideas forward from generation
to generation. So, what part will you play?

9

1.2 And Now: A Big, Annoying Notation Table

In this document, there will be a lot of math, so let’s getting our notation all set. Matrices are
generally represented by uppercase letters, e.g., A, B, C, bold lowercase letters generally represent
vectors, e.g., a, b, c, and un-bold lowercase letters generally represent scalars, e.g., a, b, c.

Symbol(s) Description
A, B, C, ... X, Y , Z Matrices, Tensors, or Random Variables (depends on context)

M ∈ Rm×n is clearly a matrix
T ∈ Rm×n×p is clearly a tensor
X ∼ N (µ, σ2) is clearly a random variables

a, b, c, ... x, y, z Scalars
a, b, c, ... x, y, z Vectors
A, B, C, ... X , Y, Z Sets, in most cases. Some exceptions:

N is a normal distribution
L is a loss function, or a Lagrangian

S × T Cartesian product: denotes the set of elements {s ∈ S, t ∈ T }
i, j, k Usually used for indices
Mij Element at the ith row and jth column of matrix M
{·}T Transposition operator
{·}H Conjugate, or Hermitian, transpose
R Set of real values
Rn Set of real-valued vectors of length n (column vector)
Rm×n Set of real-valued matrices of dimension m× n
Z Set of integers
C Set of complex values
∈ “belongs to the set”
∃ “there exists”
⊆ “is a subset of”, e.g., A ⊆ B
⊂ “is a proper subset of”, e.g., A ⊂ B
∀ “for any”, or “for all”
: or | “such that”, like x | f(x) ≥ 0

, “is defined to be”
≡ “identical to”, like, f(x) ≡ 0
⇒ “implies”, like, f(x) = 0 ⇒ g(x) · f(x) = 0
\ “excluding”, like A\B, which means, A without the elements of B
S = {...} Used to defined a set via “set-builder notation”
D = {(xn,yn) |n = ...} Set of labeled training data
ŷn Predicted labels
I Identity matrix
êi Unit/“one hot” vector: all zeros, but position i is 1
diag{·} Diagonalization operator, mapping a vector to a matrix
det{·} Determinant operator
E{·} Expected value operator
µ Mean (µx = E[x])
σ2 Variance (µx = E[(x− µx)

2])
∇ Gradient operator: ∇xf(x) means take the partials f(x) wrt x

Note: physicists might bristle at this definition

10

‖x‖p p norm of vector x

‖x‖ Generally, euclidean magnitude: ‖x‖ , ‖x‖2
x̄ Normalized (‖x̄‖ = 1) version of vector x, where x̄ = x/ ‖x‖
⊗ Kronecker product
λ{·} Eigenvalue operator∑n

i=1 Summation, from i = 1 to n
svd{·} Singular Value Decomposition operator

Table 1: Commonly Used Notation

? Example 1: Translating math to English I

Here are some examples of how we use this table to “speak math”:

(a) X = {x ⊆ R | f(x) ≥ 0}. This means, “X is the set of all x, which are a subset of the
reals, such that f(x) ≥ 0”.

(b) f(x, y) : X × Y → Zm×n. This means, “The function f which maps pairs of things from
the sets X and Y to an m× n matrix of integers.”

Your turn.

? Homework 0, Problem 1: Translating math to English II

Translate the following mathematical statements into English words.

(a) Z ⊂ R ⊂ C

(b) ∀y ∈ Y, ∃x : f(x, y) ≥ 0

(c) M = {M ∈ Cm×n |Mij ≥ 0,Mij = Mji}

(d) Y = {y | y /∈ Y} ... a

aThis is Bertrand Russell’s paradox, and it’s actually at the heart of Gödel’s Incompleteness Theorems.
Practically, we can think of a small village with a barber. This barber will cut the hair of every person who
doesn’t cut their own hair. So, who cuts the barber’s hair...?

Solution.

11

(not posted yet)

1.3 Linear Algebra Review

Matrices. A ∈ Rm×n is called a matrix, or a 2D array. Higher dimensional arrays (i.e., arrays
with dimensions > 2 are called tensors: A ∈ Rm×n×p. RGB images, for examples, are often
represented as 3D tensors, where dimensions are associated with channels, pixel height, and pixel
width. Following are several useful matrix properties:

• If A = AT , then matrix A is symmetric.
• If A = AH , then matrix A is Hermitian (i.e., conjugate symmetric)
• (A+B)T = AT +BT , but (AB)T = BTAT .
• (AB)−1 = B−1A−1, assume A, B square and invertible.

Linear Maps. A function f : V → W is said to be a linear map, or linear transformation, if

f(αx+ y) = αf(x) + f(y), ∀x, y ∈ V. (1.2)

In other words, “linear transformations preserve the operations of vector addition and scalar mul-
tiplication.” This is called superposition.

Vector Norms. The following norms are useful to understand. Assume x ∈ Rn

• p-norm: ‖x‖p = (
∑n

i=1 |xi|p)
1
p , p ≥ 1.

• ∞-norm: The infinity norm returns the largest element in a set: ‖x‖∞ = maxi{|xi|}. This
can also be computed by applying limit calculus to the equation y = (x∞1 + x∞2 + · · ·+ x∞n)

1
∞ .

12

• 2-norm: ‖x‖2 =
√
x21 + x22 + · · ·+ x2n. This is the Euclidean or “Pythagorean” magnitude of

a vector, and it can also be computed via
√
xTx.

• 1-norm: This is the Manhattan norm, and it measures the sum of the absolute values: ‖x‖1 =
|x1|+ |x2|+ · · ·+ |xn|

• 0-norm: The 0-norm is not a real norm, and it is highly nonconvex, but it simply counts
the number of nonzero elements in a vector:

‖x‖0 =
n∑

i=1

bi, bi =

{
1, xi 6= 0

0, xi = 0.
(1.3)

Hyperplanes. A hyperplane is just an n− 1 dimensional linear surface in an n dimensional space
(e.g., a line in 2D, a plane in 3D, etc).

Hyperplane Orthogonality

When a hyperplane is described by the equation wTx+w0 = 0, the vector w is orthogonal
to the hyperplane.

Proof. Take two distinct points on the hyperplane as x1 and x2. The difference vector
d = x1 − x2 must lie on the hyperplane. We may test the orthogonality of d and w:

wTd = wT (x1 − x2) (1.4a)
= wTx1 −wTx2 (1.4b)
= w0 − w0 (1.4c)
= 0. (1.4d)

Therefore, w is perpendicular to the hyperplane, since d ⊥ w.

Linear Projection. The inner product, or “dot product” of two vectors is given by

x · y = xTy =
n∑

i=1

xiyi = ‖x‖ ‖y‖ cos(θ), (1.5)

where θ is the angle between the vectors x and y. We may define the projection of y onto x via

projxy =
xTy

xTx
x =

xTy

‖x‖22
x =

xTy

‖x‖2 ‖x‖2
x =

(
xT

‖x‖2
y

)
x

‖x‖2
=
(
x̄Ty

)
x̄. (1.6)

This represents “the portion of y which points in the x direction”. A few notes about the projection
formulation:

• Meaning. projxy is confusing. It just is. A good trick is to remember that projxy is a
vector will always point in the x direction. If y is projected onto x, then the result will
point in the x direction. Look at the notation: in projxy, it looks like y is falling onto x.

• Invariance to scaling. The size of x does not matter. It could be a unit vector, or
an infinitely large vector. The results of the projection will not change: only direction
matters. For example, let’s take x and scale it up by a scalar α:

projαxy =
(αx)T y

(αx)T (αx)
(αx) =

α2

α2

xTy

xTx
x =

xTy

xTx
x = projxy (1.7)

13

We may also define a “rejection”, where a projection is subtracted out of the original vector:

rejxy , y − projxy = y − xTy

xTx
x. (1.8)

To summarize, we have

projxy =
xTy

xTx
x, projection: identifies the portion of y which “overlaps” x

rejxy = y − xTy

xTx
x, rejection: subtracts projection to make y orthogonal to x.

Vector projection can be extended into higher dimension. In particular, we are often interested in
projecting a vector y onto the column space of a matrix A. To do this, we first need to define the
range (or column space) of the matrix A. Intuitively, the range is simple: it is any linear sum of
the columns:

range(A) , {v |v = Ax,x ∈ Rn} : Matrix Range. (1.9)

Assume matrix A is non-square (i.e., A−1 is not defined), and in particular, “is tall and skinny”:
A ∈ Rm×n,m > n. By analogy, we can define the following matrix projection:

projxy = x
xTy

xTx
∈ range(x) (1.10)

projAy = A

(
ATy

ATA

)
= A

(
ATA

)−1
AT︸ ︷︷ ︸

A+

y

︸ ︷︷ ︸
x∗

∈ range(A) (1.11)

where A+ is Moore–Penrose pseudo-inverse of the matrix A‡. The vector x∗ represents the
vector which, when multiplied by A, will give us the output which (i) is optimally close to the
original vector y, yet still falls in the range(A) (our original goal).

We can also interpret, and derive, this result analytically by considering the problem

x∗ = arg min
x

‖y −Ax‖22 . (1.12)

Note: (1.11) and (1.12) solve the same problem and yield the same solution (proof later on! Get
excited!).

FF Projecting a Point onto a Line FF
We can consider a point in space (e.g., (x, y)p, denoted by the vector xp) and a hyperplane

(e.g., y = ax + b, denoted by 0 = wTx + w0), where the point does not fall directly on
the hyperplane :(What is the closest projection of this point onto this hyperplane? To solve
this problem, we take some test point on the hyperplane 0 = wTx + w0, which we call xl, where
0 = wTxl + w0 is satisfied (i.e., it falls on the hyperplane!). Note: we don’t actually need this
point; it’s just a useful trick. Let’s define f(x) as the hyperplane equation:

f(x) , wTx+ w0, (1.13)

where f(xl) = 0, since it falls on the hyperplane, and f(xp) 6= 0.
‡In this class, A will usually represent a tall-skinny data matrix, so A+ will be directly computable.

14

Figure 4: Projection

The distance vector d between the point on the hyperplane (xl) and the point we care about
(xp) is

d = xp − xl, (1.14)

as depicted in Fig. 4. In this figure, the vector w is normal to the hyperplane. If we find the
projection of d in the direction of w, then we will find the distance we are seeking:

projwdh =
wTd

wTw
w (1.15a)

=
wT (xp − xl)

wTw
w (1.15b)

=
wTxp + w0

wTw
w (1.15c)

=
f(xp)

wTw
w. (1.15d)

The result of this projection is a vector. We can get the distance dh associated with this vector by
taking its two norm:

dh =

√
(projwd)

T (projwd) (1.16a)

=

√(
f(xp)

wTw
w

)T (f(xp)

wTw
w

)
(1.16b)

=

√
f(xp)2

wTw

(wTw) (wTw)
(1.16c)

=
|f(xp)|√
wTw

(1.16d)

=
|f(xp)|
‖w‖2

. (1.16e)

15

Shortest Distance from a Point to Hyperplane

Given a hyperplane 0 = wTx + w0, residual function f(x) , wTx + w0, and point xp, the
distance dh of the closest orthogonal projection of this point onto the hyperplane is given by

dh =
|f(xp)|
‖w‖2

. (1.17)

If we care about the sign of this distance (as with Support Vector Machines (SVMs), where
the sign of f(xp) matters), we can drop the absolute value:

dh± =
f(xp)

‖w‖2
. (1.18)

Proof. See above.

We will soon re-derive this result using direct optimization.

Gram–Schmidt. Given some set of vectors, projections and rejections can be used to “orthogo-
nalize” and/or “orthonormalize” the set.

• orthogonal: two vectors x and y are generally orthogonal if xTy = 0

• orthogonalize: to make all vectors of a set orthogonal to each other
• orthonormalize: to make all vectors of a set normalized to unit magnitude and orthogonal

to each other

Given a set of vectors x1, x2, ... xn, Gram–Schmidt sequentially orthogonalizes this set:

z1 = x1 (1.19)
z2 = x2 − projz1x2 (1.20)
z3 = x3 − projz2x3 − projz1x3 (1.21)

...

zi = xi −
n−1∑
j=1

projzjxi. (1.22)

The set can then be orthonormalized via:

z̄1 =
z1
‖z1‖

, z̄2 =
z2
‖z2‖

, · · · z̄i =
zi
‖zi‖

. (1.23)

? Homework 0, Problem 2: Gram–Schmidt

Consider the following set of vectors:

x1 =

 1
2
3

 , x2

 2
1
0

 , x3

 0
1
0

 . (1.24)

(a) Via Gram–Schmidt, orthogonolize the following set of vectors, showing all steps (you

16

may always use Python for computing the actual math).
(b) Now, orthornormalize the set (i.e., by normalization). Again, please use Python.
(c) Now, take your three normalized vectors and build the matrix Z = [z̄1 z̄2 z̄3]. Does Z∗ZT

or ZT ∗ Z (these are matrix-matrix products) produce the identity matrix? Try both!

Solution.

(not posted yet)

1.4 Optimization Review

Unconstrained Optimization. The process of optimization involves finding the “best” solution
to a given problem. Sometimes, the problem will have an analytical solution; sometimes, we need
to use numerical methods (tricks) to find a good solution. Consider the following problem:

min
x

f(x). (1.25)

This means “minimize the function f(x) by tuning variable x.” In this case, x is called the decision
variable, because the optimizer can directly decide its value. This is an example of an uncon-
strained optimization problem, because there are no constraints. Sometimes, we may also use the
“arg min” notation, which means, “return the value of the argument which solves the problem.”

y1 = min
x

f(x) → returns the optimal value of f(x) (1.26)

y2 = arg min
x

f(x). → returns x at optimal value of f(x). (1.27)

In other words, y1 = f(y2). When a problem is unconstrained, we solve it using the following
three steps:

17

1. Take the gradient of the objective function
2. Set the gradient vector equal to 0

3. Solve this set of equations

The gradient vector associated with a function f(x) is given/denoted by the column vector

∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2...

∂f(x)
∂xn

 ∈ Rn×1. (1.28)

Since ∇xf(x), often written as just ∇f(x), is column vector, A∇f(x) is a valid matrix-vector
product (when A ∈ Rm×n).

? Example 2: Optimization of an Unconstrained Function

We want to solve the following problem

min
x,y

(a− x)2 + b(y − x2)2. (1.29)

This is called the Rosenbrock function, and it can be very hard for numerical optimization
tools to solve (in high dimensions, there are many solutions). First, we take the gradient and
set it equal to 0:

∇(a− x)2 + b(y − x2)2 =

[
∂f(x,y)

∂x
∂f(x,y)

∂y

]
=

[
−2(a− x)− 4b(y − x2)x

2b(y − x2)

]
=

[
0
0

]
(1.30)

If we set x = a, we kill of the a − x term. If we then set y = a2, then we kill off both other
terms! Nice. Thus, the min is equal to 0, and the argmin is equal to (x, y) = (a, a2).

Now, let’s practice unconstrained optimization in a slightly more complicated context. In the
following example, we re-derive the matrix-vector projection solution.

? Example 3: Optimal Projection via Optimization

Reconsider (1.12), which seeks to find the value x∗ such that the normed difference between
Ax and y in minimized. If A is square and invertible, the solution is clearly just x∗ = A−1y.
However, this is generally not the case. Let’s assume A ∈ Rm×n. Then, we need to solve

x∗ = arg min
x

‖y −Ax‖22 . (1.31)

To begin, let’s expand the 2-norm:

‖y −Ax‖22 = (y −Ax)T (y −Ax) (1.32a)
= yTy + (Ax)T (Ax)− (Ax)Ty − yT (Ax) (1.32b)
= yTy + xTATAx− 2yTAx. (1.32c)

18

In this expansion, we have used the fact that (Ax)Ty = yT (Ax). Why is this true? The
results of yT (Ax) yields a scalar, let’s call it α, and we know that α = αT (i.e.,1 = 1T). Thus:

yT (Ax) = α = αT =
(
yT (Ax)

)
= (Ax)T y 4 (1.33)

Anyways, let’s take the gradient of (1.32c):

∇x ‖y −Ax‖22 = 2ATAx− 2ATy. (1.34)

What the heck just happened? Let’s break it down:
1. yTy does not depend on x, so ∂

∂xy
Ty = 0.

2. 2yTAx is like vTx, so its gradient is v (just stand it up). Thus, 2ATy = (2yTA)T .
3. The xTATAx term is quadratic, and thus, a bit trickier. To simplify, let’s define Γ ,

ATA. Next, we apply the product rule to xT (Γx), where xT is the first function, and
(Γx) is the second function

∇xx
T (Γx) = ∇xx

T (Γx)︸︷︷︸
frozen

+∇x xT︸︷︷︸
frozen

(Γx) (1.35a)

= Γx+
(
xTΓ

)T (1.35b)
= Γx+ ΓTx (1.35c)

=
(
ATA+

(
ATA

)T)
x (1.35d)

=
(
ATA+ATA

)
x (1.35e)

= 2ATAx4 (1.35f)

Now that we understand the gradient in (1.34), we set it equal to 0, and then we solve for x:

2ATAx− 2ATy = 0 (1.36)
ATAx = ATy (1.37)

x∗ =
(
ATA

)−1
ATy, (1.38)

where ATA is generally invertible if it is filled with non-repeating data.

Let’s put the matrix gradient result in a box, because it is generally very useful:

Gradient of the Quadratic Form xTMx

The gradient of the quadratic form xTMx is given by

∂

∂x

(
xTMx

)
= (M +MT)x : General Matrix (1.39)

= 2Mx : Symmetric Matrix (M = MT) (1.40)

Constrained Optimization. Optimization gets much harder once we add constraints. Con-

19

straints are typically represented via

min
x

f(x) (1.41a)

s.t. g(x) ≤ 0 (1.41b)
h(x) = 0. (1.41c)

We may formulate the Lagrangian L associated with this expression by “dualizing” the constraints:

max
µ≥0,λ

min
x

f(x) + µT g(x) + λTh(x)︸ ︷︷ ︸
Lagrangian

: Lagrange Dual Problem. (1.42)

The optimal solution will sit at a saddle point, where both the minimization and maximization
operators are satisfied. From a game-theoretic perspective, this saddle point is satisfied when
neither opponent (i.e., the minimizer, and the maximizer) wants to deviate from the equilibrium
solution§. Many more details can be found here [15].

Equality Constrained Optimization Solution Procedure

To solve equality constrained optimization problems using duality, we often use the fol-
lowing steps:

1. After canonicalizing the problem (so it looks like (1.41)), formulate the Lagrangian.
2. Fix the dual variables. Solve the “inner” minimization problem via calculus.
3. Plug the solution in for the primal variables, and then solve the “outer” maximization.
4. Plug the dual and primal variable values into the original expression.

Here is a trivial example, where we already know the solution.

? Example 4: Minimization of x2 with equality constraints

Let’s solve the following problem:

min x2 (1.43a)
s.t. x− 1 = 0. (1.43b)

Clearly, the solution is x = 1, but let’s follow the steps. Formulating the Lagrangian, we have
L = x2 + λ(x− 1). Setting the gradient with respect to x to 0 yields

2x+ λ = 0. (1.44)

§The Lagrange dual problem is deeply connected to the Minimax Theorem, which was first proved by John von
Nuemann. It is a cornerstone of both optimization and game theory. “As far as I can see, there could be no theory
of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was
proved.”

20

https://en.wikipedia.org/wiki/Minimax_theorem

Solving this for the primal, we get x = −1
2λ. Let’s plug this back into the Lagrangian!

L =

(
−1

2
λ

)2

+ λ(−1

2
λ− 1) (1.45a)

=
1

4
λ2 − 1

2
λ2 − λ (1.45b)

= −1

4
λ2 − λ. (1.45c)

We now take the gradient of this expression and set it to 0:

∂L
∂λ

= −1

2
λ− 1 = 0. (1.46)

Solving this, we have

−1

2
λ = 1 (1.47a)

λ = −2. (1.47b)

If we plug the primal and dual solutions into the Lagrangian, we get the final optimal solution:

L = −1

4
λ2 − λ (1.48a)

= −1

4
(4) + 2 (1.48b)

= 1, (1.48c)

where by substitution, x∗ = 1 is the primal solution.

Now, you try with a constrained optimization problem!

21

? Homework 1, Problem 1: Distance to Hyperplane via Optimization

We want to re-derive the result from (1.17) using optimization theory. To do so, we re-
formulate the projection problem as an optimization problem:

min
x
‖xp − x‖22 (1.49a)

s.t. 0 = wTx+ w0. (1.49b)

This asks: “What is the point x that is both closest to xp and on the hyperplane?” To make
the problem easier, we use a 2-norm squared in the objective, but the optimal solution x∗ will
not change. Next, we dualize the problem:

d2h = max
λ

min
x

(xp − x)T (xp − x) + λ
(
wTx+ w0

)
(1.50a)

= max
λ

min
x

xT
p xp + xTx− 2xT

p x+ λ
(
wTx+ w0

)
(1.50b)

= max
λ

min
x

xT
p xp + xTx+

(
λwT − 2xT

p

)
x+ λw0︸ ︷︷ ︸

L(x,λ)

(1.50c)

Now, follow the above steps: solve the inner minimization by setting 0 = ∇xL(x, λ), plug the
solution in, and solve the outer maximization. Hint! aTb = bTa.

Solution.

(not posted yet)

What about inequality constrained optimization problems? The 4-step solution procedure
given above is generally only applicable for equality-constrained problems. Why? This is because

22

it is very hard to know if an inequality constraint gi(x) ≤ 0 will be active (i.e., binding, i.e.,
gi(x) = 0) or not. To over overcome this problem, active set methods [16] do something like
this:

1. Ignore all inequality constraints.
2. Solve the equality-constrained optimization problem.
3. Take the solution x∗ and plug it into the ignored inequality constraints.
4. If an inequality constraint is violated, add it into the “active set” of constraints as an equality

constraint.
5. Re-solve with the updated constraint set. If the dual variable µi of any added in/equality

constraint is negative, remove the associated in/equality constraint from the active set.
6. Rinse and repeat until you have a solution x∗ which (i) doesn’t violate any neglected inequal-

ities, and (ii) has all non-negative dual variables µi for the included inequality constraints.

While active set methods are intuitively pleasing, they can be fairly inefficient. Barrier-based
methods are more effective and more popular these days. We won’t use either method in this class,
however.

Convexity. This is not an optimization class, but the concept of convexity will come up many
times when we study ML topics. Roughly speaking, an optimization problem is convex if a
numerical optimization routine can find the globally best solution to the problem without getting
“stuck” in a local nook or cranny. Convexity is generally a good thing! Yay convexity!!

Convex Functions and Convex Sets

• Convex function. A function f(x) is convex if f(x) ≥ f(x0) + f ′(x0)(x − x0). In
other words, pick on a point on the function manifold and draw a tangent line: every
point on this tangent line must lie below the function itself.

• Convex set. A set S is convex if, for every a ∈ S and b ∈ S, then aθ + (θ − 1)b ∈
S, ∀θ ∈ (0, 1). In other words, draw a line between any two points in a set: every point
on this line must also be in the set S.

• Convex optimization. Generally, if we say an optimization problem is convex, then
it means any solution to the problem will be a global solution. This is nice, because
it means that gradient descent cannot get stuck in a local valley: optimization solvers
will always find the best possible solution.

An example of a severely nonconvex loss function (i.e., the thing we try to minimize when
we train a Neural Network) is given in Fig. 5. From this figure, it already should be obvious why
nonconvexity is a challenge when training ML models!

23

Figure 5: “The loss surfaces of ResNet-56 with skip connections.” Reproduced from [17].

24

2 Learning Theory Basics
As in [1], we denote the set of labeled training data as

D = {(xn,yn) |n = 1, 2, ...N} : training data (2.1)

where there are N total samples. Notably, xn and yn can be of different dimensions (e.g., if 10
input features in xn map to a single classification in yn):

xn ∈ X ⊆ RD : features (2.2)
yn ∈ Y ⊆ RC : labels. (2.3)

In Machine Learning, we are primarily concerned with building a model f(·) which maps input
features to predictions: ŷn = f(xn), where ŷn is a learned prediction. These predictions are always
made in a probabilistic sense. Each dimension of xn represents a single feature, and X ⊆ RD

represent the feature space.
2.1 Data Generating Distributions

To formalize this, we make the assumption that xn, yn are samples somehow drawn from a data
generating distribution [2], which we call D. This data generating distribution is generally
unknown to the user (you and me), but the set D can be thought of as its sampled, and potentially
noisy, approximation. Using the tools of machine learning, our goal is to reconstruct the original
data generating distribution D through some surrogate D̂.

Given an (xi, yi) pair, the data generating distribution D provides a probabilistic mapping (i.e.,
tells the user, how probabilistic is this mapping?). As explained in [2],

“A useful way to think about D is that it gives high probability to reasonable (x, y) pairs,
and low probability to unreasonable (x, y) pairs. An (x, y) pair can be unreasonable in
two ways. First, x might be an unusual input... Second, y might be an unusual rating
for the paired x.”

? Example 5: Multivariate Uniform Data Generating Distribution

Let’s assume (x, y) are scalars and D is a multivariate uniform distribution. x represents the
age of toddlers (from 1 to 3, definitionally), and y represents the time of day which they were
born (equally distributed over 24 hours). These factors are clearly uncorrelated. In a two-
variable uniform distribution, the volume of the probability curve must be equal to 1. Thus,
we may solve for the probability pu:

(3)(24)pu = 1 (2.4)

pu =
1

(3)(24)
(2.5)

pu =
1

72
. (2.6)

The resulting uniform probability is given by

p(x, y) =

{
1
72 , x ∈ {1, 2, 3}, y ∈ {1, ..., 24}
0, otherwise.

(2.7)

Thus, the sampled pairs (x = 1, y = 1), (x = 2, y = 24), and (x = 3, y = 7) are all equally

25

likely to occur in the sampled training set. However, (x = 10, y = −37) has an occurrence
probability of 0.

? Homework 1, Problem 2: Multivariate Gaussian Data Generating Distribution

Assume the joint probability of two variables, x and y is given by the following multivariate
Gaussian distribution:

p(x, y) =
1

2πσxσy
√
1− ρ2

e

(
− 1

2
(
1−ρ2

)[(x−µx
σx

)2
−2ρ

(
x−µx
σx

)(
y−µy
σy

)
+
(

y−µy
σy

)2])
, (2.8)

where ρ is the correlation between X and Y a:

ρ =
σx,y
σxσy

, σx,y = covariance of x and y. (2.9)

(a) Assume there is no correlation: ρ = 0. What value pair of x and y maximizes their
probability of occurring together? Why? Compute the probability density at this point.

(b) Zero correlation is a bit boring. Provide two approximate sketches (or plots, if you
insist on using LaTex) of data points that would be generated by this distribution if (i)
ρ ≈ +0.999 and (ii) ρ ≈ −0.999. Assume µx = µy = 0. Hint: No calculations are
needed here.

aNote: X is a random variable, and x is specific value or instantiation of that random variable.

Solution.

(not posted yet)

26

2.2 Maximum Likelihood Estimation (MLE)

In Machine Learning, we often assume that the samples in D were independently sampled (i.e.,
iid) from the same data generating distribution. Using these data, we estimate a set of model
parameters θ. We define the likelihood function as a function which computes the likelihood of
the observed data, given the model parameters:

p(D|θ) : Likelihood of the observed data, given the model. (2.10)

Thus, the maximum likelihood estimate (MLE) is the set of model parameters which maximize
the likelihood of the observed data:

θ∗ = arg max
θ

p(D|θ) : Maximum Likelihood Estimate. (2.11)

Since the N samples in D are iid, their joint probability is just the product of the individual
probabilities:

p(D|θ) =
N∏
i=1

p(yi|xi,θ).

Why is this the case? Remember your probability theory: if events A and B are independent, then
we say p(A ∩ B) = p(B)p(A). That is, the probability of both events occurring simultaneously is
just equal to the product of each occurring individually. We can think of a data sample (xn,yn)
being drawn as an “event”. Thus, the events of drawing data sample pairs (xi,yi) and (xj ,yj) are
independent.

Optimizing over a set of items multiplied together (i.e., xyz) can be numerically challenging
(e.g., if we have to multiply many small probabilities together, we will run into floating point
precision issues). Thus, we often choose to take the logarithm:

log(zyx) = log(x) + log(y) + log(z). (2.12)

We do this for at least four reasons.

1. The log of a set of products yields a set of sums, which is easier to deal with
2. Since probabilities are non-negative, and since the logarithm is a monotone function (for

non-negative inputs), the MLE solution θ∗ does not change when we wrap a log function
around p(D|θ).

3. If the probability is a Gaussian (which most are), then the log of the Gaussian yields a
quadratic expression. How nice!

4. Finally, minimizing the negative log likelihood is equivalent to minimizing the Kullback
Leibler divergence of the predicted distribution (p(D|θ)) and empirical distribution
(pD(x,y))) [1]. Essentially, this means the distributions associated with the observed data
and the predicted data are optimally close/minimally divergent.

Thus, we take the log likelihood via

`(θ) = log (p(D|θ)) (2.13a)

= log

(
N∏
i=1

p(yi|xi,θ)

)
(2.13b)

=

N∑
i=1

log (p(yi|xi,θ)) . (2.13c)

27

Finally, since minimization is commonly used over maximization, we can take the negative log
likelihood, defined as

NLL(θ) = −
N∑
i=1

log (p(yi|xi,θ)) : Negative Log Likelihood. (2.14)

The updated MLE is given by

θ∗ = arg min
θ

−
N∑
i=1

log (p(yi|xi,θ)) . (2.15)

? Example 6: MLE for a Univariate Gaussian

Let us try to fit a Gaussian to a set of measurements y1, y2, ... yN , which we assume came
from a Gaussian with unknown mean and variance:

p(y|µ, σ2) =

N∏
i=1

1√
2πσ2

e−
(
yi−µ

)2
2σ2 . (2.16)

Taking the NLL, we have

NLL
(
p(y|µ, σ2)

)
= − log

(
N∏
i=1

1√
2πσ2

e−
(
yi−µ

)2
2σ2

)
(2.17a)

= −N log
(

1√
2πσ2

)
−

N∑
i=1

log
(
e−

(
yi−µ

)2
2σ2

)
(2.17b)

=
N

2
log
(
2πσ2

)
+

1

2σ2

N∑
i=1

(yi − µ)2 . (2.17c)

Taking this formulation, we may minimize the NLL via:

µ∗, σ2∗ = arg min
µ,σ2

NLL
(
µ, σ2

)
. (2.18)

? Homework 2, Problem 1: Solving the MLE for a Univariate Gaussian

Using (2.17c), solvea (2.18) for the optimal values of mean and variance. Show all steps. Hint:
as usual, take a gradient, and set it equal to 0. Then solve for what you want.

(a) µ∗ =

(b) σ2∗ =

aThe solutions are obvious; we care about understanding the steps.

Solution.

28

(not posted yet)

? Example 7: MLE for Linear Regression

In this example, we assume a linear model is corrupted with zero-mean Gaussian noise:

y = xTw + ε, ε ∼ N (0, σ2). (2.19)

In the Linear Regression problem, we wish to find the set of weights w which solve the MLE
problem, thus maximizing the probability

p(y|x,w, σ2) =
1√
2πσ2

e−
(
y−xTw

)2
2σ2 . (2.20)

Taking the NLL across N data points, we have

NLL (w) =
N

2
log(2πσ2) +

N∑
i=1

(
yi − xT

i w
)2

2σ2
(2.21)

∝
N∑
i=1

(
yi − xT

i w
)2

, (2.22)

where, in the second step, we removed the additive and multiplicative constants. This is a sum
of squares, or least squares, formulation, whose solution we will consider later on.

We may also consider the MLE associated with a Bernoulli distribution. As a reminder, this
distribution takes a binary input, x ∈ {0, 1}, and maps to a discrete probability θ. The associated

29

probability mass function is given by

p(x) =

{
θ, x = 1

1− θ, x = 0.
(2.23)

This can be written more compactly via

p(x) = θx(1− θ)1−x. (2.24)

? Example 8: MLE for Bernoulli Distribution

Given an iid sampled set of event occurrences in x, their probability is modeled by

p(x|θ) =
N∏
i=1

p(xi|θ). (2.25)

Taking the NLL, we have

− log (p(x|θ)) = −
N∑
i=1

log (p(xi|θ)) (2.26a)

= −
N∑
i=1

log
(
θxi (1− θ)(1−xi)

)
(2.26b)

= −
N∑
i=1

log (θxi) + log
(
(1− θ)(1−xi)

)
(2.26c)

= −
N∑
i=1

xi log (θ) + (1− xi) log (1− θ) , (2.26d)

just by the property of logs. Next, we note that the values of xi are given, i.e., they are just
data. We sum over this data:

N1 =
N∑
i=1

xi (2.27)

N0 =
N∑
i=1

(1− xi) = N −N1. (2.28)

Using these, we update the NLL and take its gradient:

NLL(p(x|θ)) = −N1 log (θ)−N0 log (1− θ) (2.29)

∂θNLL = −N1
1

θ
+N0

1

1− θ
≡ 0. (2.30)

30

Solving for θ, we have

N1 −N1θ = N0θ (2.31)
N1 = (N0 +N1) θ (2.32)

θ =
N1

N0 +N1
. (2.33)

Thus, the MLE probability of x = 1 (i.e., of an event happening) has a trivial solution: just
take the ratio of the number of event occurrences over the total number of observations.

2.3 Maximum A Posteriori (MAP) Estimation

MLE methods are susceptible to overfitting, and thus, generalizing poorly. To overcome this prob-
lem, we can regularize the model with new, useful information. Where does this information come
from? Usually, it comes from some prior knowledge we have about, e.g., the model parameters.
In order to incorporate this information into the problem, we invoke Bayes theorem:

p(θ|D) = p(D|θ)p(θ)
p(D)

(2.34)

p(θ) : prior knowledge about the model (2.35)
p(D|θ) : likelihood of the data, given the model (2.36)
p(θ|D) : posterior distribution of the model (2.37)
p(D) : evidence (i.e., data). (2.38)

If we want to explicitly incorporate the prior information into the estimation problem, we can
maximize the posterior distribution, which is proportional to the product of the likelihood and
prior. As usual, we can minimize the negative log of the posterior to solve this problem:

arg min
θ

− log p(θ|D) = arg min
θ

− log (p(D|θ))− log (p(θ)) . (2.39)

This is Maximum A Posteriori (MAP) estimation.

? Example 9: Gaussian Prior

Consider a regression model with unknown parameter θ. Let’s assume its uncertainty can be
estimated with a Gaussian prior via

p(θ) =
1√
π/λ

e−λ(θ−θ0)
2

. (2.40)

In this case, θ0 is the known mean, and λ is related to our uncertainty (i.e., parameter variance).
Taking the negative log, we have

− log(p(θ)) = − log

(
1√
π/λ

)
+ λ (θ − θ0)

2 (2.41)

∝ λ (θ − θ0)
2 . (2.42)

31

This shows up at Tikhonov, l2 norm, or ridge regularization (more on this later.

? Homework 2, Problem 2: Laplace Prior.

A Laplace distribution is given by

p(x|µ, b) = 1

2b
e−

|x−µ|
b , (2.43)

where b is called the Median absolute deviation (MAD). Let’s now assume the prior distribution
over an unknown model parameter θ is a Laplace distribution, with mean θ0 and MAD b. What
does the negative log likelihood yield? How do you describe this?

Solution.

(not posted yet)

In summary, MLE and MAP are given by

θ∗
MLE = arg min− log(p(D|θ)) (2.44)

θ∗
MAP = arg min− log(p(D|θ)p(θ)). (2.45)

In a special case, the solutions are identical (i.e., when the prior has no influence).

32

MLE and MAP Equivalence

When the prior p(θ) is uniform (e.g., p(θ) = 1),

θ∗
MLE = θ∗

MAP. (2.46)

Proof. When the prior is uniform, the posterior function and the likelihood functions will be
proportional to each other:

p(θ|D) ∝ p(D|θ)p(θ) ∝ p(D|θ). (2.47)

Thus, they will have the same negative log minimizers: θ∗
MLE = θ∗

MAP.

2.4 Regression vs Classification

Within the field of supervised learning, there are generally two sorts of problems: classification
problems, and regression problems.

• Classification. In classification problems, a model learns to choose the most probable output
class from a set of discrete, mutually exclusive classes Y = {1, 2, ..., C}. Generally, this set is
unordered, so there is no reason to believe that class 1 is more similar to class 2 than it is
to class 100. Since the classes are not ordered, we need to choose our loss function carefully;
cross-entropy loss functions are commonly employed. If there are only two output classes,
then the generally multi-class problem becomes a problem of binary classification.

• Regression. In regression problems, a model produces an output y ∈ R which is continuous,
rather than discrete, in nature. When outputs are continuous, we can use loss functions which
directly capture the notation of distance (e.g., Mean Square Error), since a predicted output
of 2.1 is objectively closer to 2.2 than it is to 3.5. In contrast to classification, it is not
necessarily possible to say if a “bird” class if closer to a “skateboard” or a “watering can”.

In both classification and regression problems, we seek to learn some model f(x,θ) which serves
as a function approximator. The “ground truth” function it is approximating could be, e.g., a
sin curve in the case of a regression model, or a binary classifier

ŷ = freg(x,θ), ŷ ≈ sin(x) : regression “ground truth” (2.48)

ŷ = fcls(x,θ), ŷ ≈

{
1, x ∈ R1

0, x ∈ R2

: classification “ground truth”. (2.49)

What, though, is the “ground truth” of a classifier? As we have all learned from stressful CAPTCHA
image selection tests, ground truth classification is a bit “pie in the sky”. We can hypothesize the
existence, however, of an optimal classifier. This is often referred to as a Bayes Optimal Classifier
(BOC). This is a theoretical, rather than a practical, tool, and it answers the following question:
given the training data, what is the most probable label ŷ∗ associated with a new input x?

ŷ∗ = arg max
ŷ

p(ŷ|x,D) : Bayes Optimal Classifier. (2.50)

This differs from an MLE or MAP estimator in that it directly computes the most probable pre-
diction ŷ rather than the most probable model that produced the prediction. Thus, the BOC can
be thought of as averaging across all possible models, weighted by their posterior probabilities.

33

2.5 Discriminative vs Generative Classifier Models

Classification models can also be classified as either discriminative or generative.

• Discriminative Models. These models learn the conditional distribution p(y|X = x). In
order words, given and input, they model the probability distribution over the outputs. Dis-
criminative models do not need to waste computational effort on modeling x the input, since
this is always given as an input. This is primarily what we study in this class. Discriminative
modeling benefits are nicely enumerated in [1].

• Generative Models. These models learn the joint distribution p(x, y) = p(y)p(x|y). Once
the full joint distribution is know, it can directly generate new data pairs (x, y) for any set
of targets (i.e., outputs). Generative modeling benefits are nicely enumerated in [1].

2.5.1 Naive Bayes Classifiers

The Naive Bayes Classifier is a type of classifier which makes a simple assumption: given an output
classification (which is a condition), input features are mutually independent:

p(xi|y = c, xj 6=i,θ) = p(xi|y = c,θ). (2.51)

For example, x1, x2, ... xn may represent the words in a movie review, and c may represent the
classification of the review (positive or negative). If the classification is given y = c, then the
probability of the the review containing the words “excellent” and “amazing” are independent [2].
The probability of having y = c (which we denote as yc), given the sequence of words x, is nicely
given by Bayes’ rule via

pθ(yc|x) =
pθ(x|yc)pθ(yc)

pθ(x)
, (2.52)

but we already know that the features are independent:

pθ(x|yc) =
D∏
i=1

pθ(xi|yc). (2.53)

Thus, by simplifying Bayes’ rule, we may compute

pθ(yc|x) =
pθ(x|yc)pθ(yc)

pθ(x)
(2.54a)

∝ pθ(x|yc)pθ(yc) (2.54b)

∝ pθ(yc)

D∏
i=1

pθ(xi|yc), (2.54c)

where the “evidence” in the denominator has been omitted. This method is generative in the
sense that it models pθ(xi|yc) directly, and then uses this to compute pθ(yc|x) (i.e., rather than
predicting this directly). Before we show an example, we recall the Bernoulli distribution and the
NLL solution of its MLE (see (2.33)).

? Example 10: Naive Bayes Classifier

34

As in 9.3.1 from [1], assume a Naive Bayes classifier with binary input features (i.e., xi ∈ {0, 1}).
A Bernoulli distribution will model the probability of an input feature given the output
prediction yc. In our naive Bayes problem, the output prediction yc is a classification, and xi
is a binary variable:

pθ(xi|yc) = θxi
ic (1− θic)

(1−xi) (2.55)

pθ(x|yc) =
D∏
i=1

θxi
ic (1− θic)

(1−xi), (2.56)

where the model parameter θic is the probability of feature xi = 1 given classification yc, and
D is the total number of features.

35

? Homework 3, Problem 1: Naive Bayes Classifier Probabilities (HW3!)

In light of the previous example, lets use a Naive Bayes Classifier to predict image pix-
els. Let yc represent the classification of a handwritten digit, taking a value within the set
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let’s say you are given an image matrix Xi ∈ R8×8, and an associated
image classification yi ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

(a) Let X(jk)
i ∈ {0, 1} (1 means black, 0 mean white) denote a single pixel of grayscale image

i located at position j, k. Using a Naive Bayes classifier with a Bernoulli distribution for
the likelihood, what does θjk,c represent? What does p(Xjk

i |yi = c) mean?
(b) In an example like this, do you think the naive Bayes assumption is justifiable? Why

would Xjk
i and X

(j+1)k
i have no impact on each other?

(c) Using the results from the MLE Bernoulli distribution (2.33), how can you compute the
MLE for θjk,c? You will code this up in the coding part of the assignment. Assume
you have N images Xi, i ∈ {1, 2, ..., N} with classifications yi. Hint: For a given image
classification yi = c, you want to count up the number of black pixels vs white pixels at
position jk.

(d) Finally, why is the classification model “generative”?

Solution.

(not posted yet)

2.6 Entropy & Cross-Entropy

A primary goal of ML is to learn probabilistic distributions D̂ which are optimally similar to the
true distributions D used to generate the provided training data D. The entropy associated with

36

a distribution with probability density p(x) is given by

H(p) = −
∑
x

p(x) log(p(x)) (discrete case) (2.57)

= −
∫

p(x) log(p(x))dx (continuous case), (2.58)

where base 2 is commonly used when dealing with bits, but we will use base e, which assumes a unit
of nats. Entropy measures the amount of average “surprise” in a distribution; this is maximized
in uniform distributions, and it is minimized in δ function spikes (i.e, when all information is
located at a single point).

? Homework 2, Problem 3: Entropy of a Discrete Distribution

Consider the discrete distribution.

p(x) =


1
4 , x = 1
1
2 , x = 2
1
4 , x = 3.

(2.59)

(a) Compute the entropy associated with this distribution.
(b) Set the probabilities associated with x = 1 and x = 3 to 1/8. Properly adjust the middle

probability, and recompute the entropy. Does this increase or decrease the entropy?
Why?

Solution.

37

(not posted yet)

What is the intuition behind the mathematical definition of entropy? It lies in the fact that
suspire is an inherently additive phenomenon (i.e., when you learn two surprising facts that are
uncorrelated, you are generally twice as surprised). The log operator maps multiplicative “proba-
bility space” into an additive “surprise space”, where − log(1) maps to zero surprise, while − log(0)
maps to infinite surprise. Since − log(p(x)) is surprise, and p(x) is the probability of the surprise,
then we can compute the expected value of the surprise as −

∫
p(x) log(p(x))dx, which is exactly

the definition of entropy provided in (2.58).
Cross-entropy: Given two distributions p and q, we may also compute the cross-entropy.

This measures the amount of surprise we get when using distribution p to make predictions about
distribution q. This is quantified (again, assume base e) via

Hce(p, q) = −
∑
x

p(x) log(q(x)). (2.60)

For our purposes, we can think of p(x) as the distribution of the ground-truth, while q(x) is the
distribution of the model we are building. Given p(x), cross-entropy will be minimized when
q(x) = p(x) (this is related to Shannon’s source coding theorem [1]). When our derived
distribution matches the data generating distribution, cross-entropy is minimized.

? Example 11: Cross-Entropy Minimization

Consider the known distribution p(x) and the unknown distribution q(x):

p(x) =

{
1
3 , x = 1
2
3 , x = 2

, q(x) =

{
1
γ , x = 1

1− 1
γ , x = 2.

(2.61)

38

We want to show that the cross-entropy will be minimized when γ = 3. We formulate
the cross-entropy function as

Hce(p, q, γ) = −
1

3
log
(
1

γ

)
− 2

3
log
(
1− 1

γ

)
(2.62a)

= −1

3
log
(
1

γ

)
− 2

3
log
(
γ − 1

γ

)
(2.62b)

= −1

3
log (1) + 1

3
log (γ)− 2

3
log (γ − 1) +

2

3
log (γ) (2.62c)

= −1

3
log (1)− 2

3
log (γ − 1) + log (γ) . (2.62d)

We take the gradient, and set it to 0:

∂

∂γ
Hce = −

2

3

1

γ − 1
+

1

γ
= 0. (2.63)

Solving this expression, we have

2

3

1

γ − 1
=

1

γ
(2.64a)

3

2
(γ − 1) = γ (2.64b)
3

2
γ − γ =

3

2
(2.64c)

1

2
γ =

3

2
(2.64d)

γ = 3. (2.64e)

In classification tasks, cross-entropy becomes a key loss function. In particular, within classi-
fication tasks, the binary cross-entropy loss function is given by

Lbce(y, ŷ) =

N∑
i=1

(−yi log(ŷi)− (1− yi) log(1− ŷi)) : Binary Cross-Entropy Loss, (2.65)

where yi is a true label, and ŷi is a prediction. As we saw in the previous example, cross entropy will
be minimized when the training data matches the predictions. We will motivate this loss function
more strongly when we study logistic regression.

2.7 Logistic and Softmax Functions

The logistic function is given by

σ(x) ,
1

1 + e−x
= p : Sigmoid (or Logistic) Function. (2.66)

This function maps any real value to between 0 and 1, where these output values are typically
interpreted as probabilities. Usefully, the gradient of the sigmoid is given by

∂

∂x
σ(x) = σ′(x) = σ(x) (1− σ(x)) . (2.67)

? Homework 2, Problem 4: Sigmoid Derivative

39

Show that σ′(x) = σ(x) (1− σ(x)). Hint: Use (1 + e−x)
−1, and apply chain rule. Then, tinker.

Play around with the math.

Solution.

(not posted yet)

The inverse of the sigmoid is called the logit. This maps the probability of an event occurring
back to the event itself:

logit(p) , log
(

p

1− p

)
= x : Logit Function. (2.68)

The integral of the sigmoid is given by the softplus function. This function starts from 0, and
then climbs to ∞. This function is often used as a smoother version of a ramp function:

σ+(x) , log (1 + ex) : Softplus Function. (2.69)

? Homework 2, Problem 5: Logit and Softplus Derivation

Please show the following:

(a) Show that the inverse of the sigmoid function (2.66) yields the logit (2.68).
(b) Show that the derivative of the softplus (2.69) yields the sigmoid function (2.66).

Solution.

40

(not posted yet)

In multi-class prediction problems, we often map various class categories to their classifi-
cation probabilities. In these cases, we employ the softmax function:

sm (x) =
[

ex1∑
j e

xj
ex2∑
j e

xj · · · exn∑
j e

xj

]T
(2.70)

smi (x) =
exi∑
j e

xj
. (2.71)

Notably, the softmax input is a vector, and all outputs (i.e., probabilities) fall between 0 and 1.

? Homework 2, Problem 6: Softmax Sum

Show the sum of the softmax outputs sum to 1. Why is this necessary, from a probabilistic
perspective?

Solution.

41

(not posted yet)

2.8 The Bias-Variance Conundrum

When we train a ML model, we are initially concerned with minimizing the loss associated with
the training data (i.e., does the model make good predictions?). A simple model (with only a
few parameters) might return high error, and a more complex model will probably return lower
error. As this error drops, we say the bias of the model drops. However, what if we retrained
these models on new training data? Probably, the simple model would look pretty similar (i.e., the
change in model parameter would have a low variance), but the complex model would probably look
very different (i.e., the change in model parameter would have a higher variance). This is because
the more complex model a model is, the more capacity it has to “over-specialize”, or overfit, the
training data.

• Bias: model error, even if the model is trained on infinite training data (this goes down as
the model gets more complex)

• Variance: model parameter sensitivity to new data (goes up as the model gets more com-
plex). This also represents the distance between the learned model and the true model, given
finite training data.

Typically, we want to operate at the point of minimizes the sum of model bias and model variance.
This will yield a model which both performs well on the training data (low bias) and performs well
on future unseen test data (low variance).

2.8.1 Overfitting vs Underfitting

• Underfitting. Models with low variance and high bias are generally “underfit”, meaning
they are too simple to capture the complexities in the training data. These models may

42

generalize relatively well, but have high error. Solution: Increase the complexities and
representational power of the model.

• Overfitting. Models with high variance and tlower bias are generally “overfit”, meaning
their representational power has overspecialized on the data, essentially memorizing it. These
models fit the training data super well, but they generalize poorly. Solution: “Regularize”
the model (i.e., penalize certain types of complexity), incorporate prior information to guide
the training, and utilize cross-validation in training.

2.8.2 Occam’s Razor

Figure 6: Bias-Variance Trade-off.

What degree of model complexity is best? Let’s as-
sume we have two models which fit some training
dataset equally well. Occam’s Razor says that
simpler is better; better in the sense that it will gen-
eralize more effectively to unseen data. This princi-
ple extends beyond machine learning and is generally
helpful . In the context of uncertainties, the simplest
explanation is usually the most likely. “Simple so-
lutions generalize well.”

2.8.3 Model Regularization

Within the field of Machine Learning, regularization generally penalizes complexities (e.g., the size
of parameter weights, the number of nonzero terms, the model’s sensitivity to data perturbations,
etc). We will see more specific regularization strategies in the coming topics. Popular regulariza-
tion techniques include Ridge (or Tikhonov) regularization, Lasso regularization, Elastic Net
regularization, and early stopping.

2.8.4 Inductive Bias

Whether we acknowledge it or not, all models make assumptions. For example,
• Linear regression assumes the data can be a fit with a linear model.
• K-nearest neighbors assumes that tightly grouped data points should have the same clas-

sification, and that all features have the same importance.
• Weight regularization methods assume that model parameter should be small.
Some inductive biases are helpful, while others are not. Overall, we should choose models whose

inductive biases are well matched to the data that we are trying to learn a model for. As stated
in CiML [2], inductive biases represent “what we know before the data arrives.” If we know nothing,
we should be careful about choosing a model with a high degree of inductive bias.

2.8.5 No Free Lunch Theorem

When faced with a range of learning tasks, it maybe tempting to assume there is “one model
to rule them all”, i.e., there is one model that will outperform all other models on all of the
tasks. However, this is not true. In 1997, David Wolpert and William Macready showed that,
when averaged across all possible problems (or data sets), every model performs equally well (i.e.,
equally poorly). This is called the No Free Lunch (NFL) Theorem. Each model has inductive
biases, and when performance is averaged across these all data sets, these inductive biases help and

43

https://serokell.io/blog/bias-variance-tradeoff

Algorithm 1 Early Stopping
Input: Training Dt and validation Dv data
Output: Trained model

1: Initialize: i = 1, e0 =∞, e1 = L(Dv)
2: while ei < ei−1 (validation error shrinking) do
3: i← i+ 1
4: Train the model on Dt for T more steps
5: Evaluate model performance on validation data: ei = L(Dv)
6: end while

Return: Model from 2nd-to-last iteration

hurt the performance of the model mutually canceling ways. Given a set of data set indices I, a
performance metric p(), and a set of models (models m “a” and “b”), Sam’s statement of the NFL
theorem follows:

1

|I|
∑
i∈I

p(m(b)(Di))) ≈
1

|I|
∑
i∈I

p(m(a)(Di))) (2.72)

The point is this: a model that works well in one domain may perform very poorly in another.
When choosing a model architecture and training program to fit some data, domain knowledge
and testing (e.g., cross-validation) should always be used to select the model.

2.8.6 Data-Splitting, Early Stopping, and Cross-Validation

The final tool we present to overcome the bias-variance conundrum is a technique known as cross-
validation. This helps us answer question like, “how long should I train my model for”? And
“What degree polynomial should I use to fit the data?” Given a sampled data set D, we typically
split this data twice.

• The first split is the typical “80/20” split, where 80% of the data is used for training, and
20% is reserved for testing (i.e., post-processing evaluation). As stated in [2]:

Never ever touch your test data!

• The second split takes the training data, and spits it further; often, the data is split into an
actual training subset, and another subset known as the validation set. The validation set
is used to monitor the performance of the model as it trains on the training data.

After these two splits, the full dataset is now partitioned into something like “70/10/20” =
“training/validation/test” buckets, but these numbers can certainly vary [2]. In order to apply
early stopping, we can use Alg. 1, where the function L(Dv) assesses model performance/error
on validation data Dv.

Once validation error starts to climb, this is an indication that we are starting to overfit the
data. Early stopping can be used to determine, either, how much we should train a model, or
how strongly we should regularize a model (more on this later).

Cross-validation: While this simple “70/10/20” split + early stopping can work well, there
are several drawbacks. First, we “lose” 10% of our data just to validate. At the same time, only
using 10% of the data to validate is a pretty small percentage.

44

Algorithm 2 Cross Validation (for Length of Model Training)
Input: Data split into K folds: (2.73)
Output: Trained model

1: Initialize: j = 1, e0 =∞, e1 = ∞
2

2: while ej < ej−1 (validation error shrinking) do
3: j ← j + 1
4: for i ∈ {1, 2, ...,K} do
5: Train model i on Dt\Dt

i for T more steps
6: Validate on Dt

i

7: ej ← ej + L(Dt
i)

8: end for
9: ej ← ej/K (take the average across the K folds)

10: end while
Return: Model from 2nd-to-last iteration

To overcome these problems, we can use a cross-validation procedure, where small subsets of
the training data are sequentially used for training, then validation, then training, etc. To apply
this, we split the training data into K “folds” (K = 10 is very common):

Dt = {Dt
1,Dt

2, ...Dt
K}. (2.73)

Next, we train on K − 1 of these data sets, and validate on the one left out. The overall
procedure is given in Alg. 2. In this algorithm, line 9 takes an average error across all training
evaluations:

e =
1

K

K∑
i=1

LDt\Dt
i

(
Dt

i

)
: Cross Validation Error (2.74)

where LDt\Dt
i

(
Dt

i

)
means “the loss function for a model trained on all data, except Dt

i , but evaluated
on Dt

i”.

45

3 Unsupervised Learning

Imagine someone comes to you and dumps a bag of data on your desk. “Is this data organized?”
Nope. “Is it labeled into correct classes?” Nope. “Well, do I even know what I am looking for?”
Nope. Welcome, friends, to the Adams Administration!∗ world of unsupervised learning! As a
human being, armed with some basic machine learning tools, you might feel a natural urge to
predict one set of features from another set. However, we are getting ahead of ourselves.

In unsupervised learning, we consider a set of sampled data that look like this:

D = {xi | i = 1, 2, ..., N} : Unsupervised Learning Dataset. (3.1)

Where is the labeled ouput predictions? There are none.
3.1 K-Means Clustering

The first unsupervised approach we consider is a clustering approach called K-Means Clustering.
Consider some ith data point xi ∈ RD, where D is the number of features. This data point is
generally multidimensional (e.g., x7 = (3.2, 4.4,−6.1) in three dimensional coordinate space when
D = 3). With K-Means clustering, our goal is to find a set of K centers µk ∈ RD, such that
the total distance from the data points to their assigned cluster centers is minimized. In order to
formulate this problem, we introduce selection variable zi which maps a given data point xi to its
associated center µk. For example, assume x1 is associated with cluster 13, and x2 is associated
with cluster 6, then

i = 1→ z1 = 13→ µz1 = µ13 : “data point i = 1 is assigned to center k = 13” (3.2)
i = 2→ z2 = 6→ µz2 = µ6 “data point i = 2 is assigned to center k = 6” (3.3)

Using this notation, we may define a loss function JKM(µ, z). This loss function computes the
K-Means quality of fit via

JKM(µ, z) =

N∑
i=1

‖xi − µzi‖
2
2 . (3.4)

That is, it loops over each data point, measures its distance from its assigned center, and sums
these distances up. On the surface, we have two “knobs” to tune. First, we may tune the location
of the centers µk, and second, we may tune which center each data point is assigned to via zi. By
tuning the centers and assignments, we may find better or worse K-Means models.

However... given a set of assignments, we may actually directly compute the optimal
center definitions via

µk =
1

Nk

∑
i : zi=k

xi. (3.5)

Under the sum, “i : zi = k” means: “sum over all indices i, such that zi = k”, meaning, only sum
data points which are assigned to a given cluster. In other words, (3.5) says that the center is just
the average of all associated data points.

? Homework 3, Problem 2: Cluster Center Minimization Solution

∗Hamilton joke.

46

In this problem, we have the following remark (simplified to the scalar case):

Remark 1. Given a collection of scalar data points x1, x2, x3... the value of µ which solves

µ∗ = arg min
µ

n∑
i=1

(xi − µ)2

is given by µ∗ = 1
n

∑n
i=1 xi.

Proof. Show this result for HW! Hint: Take the gradient and set it equal to 0.

Solution.

(not posted yet)

Thus, for a given set of cluster assignments zi, we may directly compute the cluster means.
Thus, we can compute the K-Means loss function directly from cluster assignments via

JKM(z) =

N∑
i=1

∥∥∥∥∥∥xi −

 1

Nk

∑
j : zj=zi

xj

∥∥∥∥∥∥
2

2

. (3.6)

The variables associated with the minimization of this function are discrete integers, meaning this
is a very hard problem to solve to global optimality (non-convex, NP-hard). We can use a heuristic
algorithm, given in Alg. 3, which starts with some set of centroids, locates their closest points, and
then iteratively update the centroids.

47

Algorithm 3 K-Means Clustering Algorithm
Input: N data points x1, x2... xN

Input: Number of clusters K
Output: N cluster assignments z1, z2... zN

1: Initialize centroid values µ1, µ2... µK

2: Optional: Initialize centroids with K-Means++
3: while Convergence criteria not met do
4: for i ∈ {1, 2, ..., N} do
5: Assign xi to closest centroid: zi = arg minj∈{1...K} ‖xi − µj‖22
6: end for
7: Update all centroids, based on assignments, via (3.5)
8: Optional: Compute K-Means loss: (3.4)
9: end while

? Homework 3, Problem 3: Clustering Algorithm Convergence

In the coding part of this assignment, you will code up Alg. 3 from scratch. Then, you will
test three different convergence criteria which you described here. For each of the following
convergence criteria, describe, using words and variables and equations (if needed), how you
would implement each of the following convergence criteria:

(a) Total number of loop iterations
(b) Percent change in loss function
(c) An additional metric that you design (the more creative the better).

Solution.

48

(not posted yet)

? Homework 3, Problem 4: K-Means Computational Complexity

In this problem, please derive or compute the claim that Alg. 3 runs in O(TNK), where T
is the number of while loop iterations, N is the number of points, and K is the number of
centroids.

Solution.

49

(not posted yet)

3.1.1 Selection of K

One key challenge of the K-Means algorithm is choosing the number of clusters (i.e., big K). A
helpful heuristic is the Silhouette Coefficient; this measures “how similar an object is to its
own cluster (cohesion) compared to other clusters (separation)” [18]. The silhouette coefficient
associated with a single data-point i, sc(i), is given by

sc(i) = bi − ai
max{ai, bi}

: silhouette coefficient (3.7)

ai = ‖xi − µzi‖2 : mean distance to other in-cluster points (3.8)
bi =

∥∥xi − µ′∥∥
2
: mean distance to other points in next-closest cluster, (3.9)

where k is the centroid index associated with data point i, and µ′ is the next-closest centroid.

3.1.2 Computational Complexity of K-Means

Within the theoretical computer science domain, computational complexity refers to the number
of steps an algorithm requires in order to finish. If an algorithm, with, say, N inputs is O(N), then
we say it takes on the order of N steps to solve. Furthermore, say α is some positive constant:
curiously, we have that O(α · N) = O(N), since we care about dominant orders of magnitude.
Assume Alg. 3 iterates T times, with K centroids and N data points. The computational complexity
of Alg. 3 is approximately O(TNK).

3.1.3 K-Means++

In order to improve K-Means performance, K-Means++ performs a smarter initialization. The key
idea is to start with a set of centroids µk which more optimally “cover” the full dataset, according

50

to the following steps.

1. We first randomly pick a staring point µ1 = xn.

2. Next, we compute the distance from this point to all other points: D(xi) = ‖xi − µ1‖. The
next centroid is then selected. The probability of a point xm being selected as the next centroid
is proportional to its normalized distance from the first centroid: p(µ2 = xi) =

D(xi)∑N
j=1 D(xj)

.

3. As more centroids are added, this process is generalized. Probabilities are computed based
on the minimum distance to all previously-selected centroids.

p(µt = xi) =
Dt−1(xi)∑N
j=1Dt−1(xj)

, (3.10)

where

Dt−1(xi) = min
k∈{1...t−1}

‖xi − µk‖ . (3.11)

4. Using these initializations, continue with standard K-Means.

? Homework 3, Problem 5: K-Means++ Centroid Selection

Let’s say you are given a set of positive distances: D1, D2, and D3. Using these, (3.10)
computes the probability that each associated point x1, x2, and x3, will be selected as the
next centroid. You are also given a random number generator, random.uniform(), which spits
out a value r between 0 and 1. Write a function f(r,D) which takes r and the three distances,
and returns the correct next centroid. Hint: chop up the uniform probability domain!
Another hint: Here is how your function should look:

f(r,D) =


x1, r ∈ ...

x2, r ∈ ...

x3, r ∈ ...

(3.12)

Solution.

51

(not posted yet)

3.2 Principal Component Analysis

Principal Component Analysis (PCA) is a fundamentally important unsupervised learning approach
which shows up in many different contexts. It is used, primarily, for dimensionality reduction and for
encoding data sets into smaller “latent variable” (i.e., hidden, mathematical variable) dimensions.
To understand its basics, we need to first understand the Singular Value Decomposition (SVD).

3.2.1 Singular Value Decomposition

Singular Value Decomposition (SVD) takes a matrix, A ∈ Rm×n, and decomposes it, similar to
how you can decompose a matrix using eigenvalue decomposition. However, matrix A need not be
square to apply the SVD. The SVD decomposition is given by

A = UΣV T : Singular Value Decomposition (3.13a)
U ∈ Rm×m, UTU = UUT = Im Left Singular Vectors (3.13b)
Σ ∈ Rm×n Singular Values Matrix (3.13c)
V ∈ Rn×n, V TV = V V T = In Right Singular Vectors. (3.13d)

Matrix Σ has generally positive, but always nonnegative, values on the diagonals (starting at (1,1)).
These are called singular values, and they are very similar to eigenvalues†. When m 6= n, we note
that the matrix (3.13c) is not a square matrix, and there will be rows or columns of all zeros.
To simplify computation, it is common to define an “economy” version of the SVD:

†σ(A) = λ(A) when A is a normal matrix: ATA = AAT .

52

Given the matrix A ∈ Rm×n, we set t , min(m,n). Then, the Economy SVD is given by

A = UΣV T Economy SVD (3.14a)
U ∈ Rm×t, UTU = I Left Singular Vectors (3.14b)
Σ ∈ Rt×t Singular Values Matrix (3.14c)
V ∈ Rn×t, V TV = I Right Singular Vectors. (3.14d)

The economy version of the SVD is easier to compute and generally much more useful, so it is
what we will use most often. When we say SVD, we always mean the economy SVD. If we take
the SVD of a matrix A, we can decompose the matrix into a sum of n rank-1 outer products‡:

A = UΣV T =
[
u1 u2 · · · um

]  σ1
σ2

. . .




vT
1

vT
2
...
vT
n

 (3.15a)

=
[
u1 u2 · · · um

]


σ1v
T
1

σ2v
T
2

...
σnv

T
n

 (3.15b)

= σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σnunv

T
n (3.15c)

=
n∑

i=1

σiuiv
T
i . (3.15d)

Importantly, the singular values σ1, σ2, ..., σn are ordered by magnitude:

σ1 ≥ σ2 ≥ · · · ≥ σn, (3.16)

where σ1 has the most “energy”, and σn has the least energy. The associated singular vectors,
u1,..., ut and v1,..., vt form orthonormal bases. That is

uT
i uj =

{
1, i = j

0, i 6= j
(left singular vecs), vT

i vj =

{
1, i = j

0, i 6= j
(right singular vecs).

‡An inner product of two vectors xTy yields a scalar. An outer product yields a matrix (!): xyT . This matrix
is rank-1, meaning every column is just a scaled version of the first one.

53

The SVD and Unitary Matrices

In the standard SVD (3.13), the left and right singular vector matrices are both square and
unitary (or orthogonal), meaning the transpose is equal to the inverse:

UTU = UUT = Im (3.17)
V TV = V V T = In. (3.18)

In the economy SVD, we have to BE CAREFUL: one of these matrices will not be square,
and thus, will not be orthogonal. In the economy SVD, both matrices will still satisfy

UTU = I (economy svd) (3.19)
V TV = I (economy svd). (3.20)

However, only one of them will be square and orthogonal, depending on (i) how the data is
stacked (rows vs columns – more on this later), and (ii) how many samples vs features there
are in the data:

t = min(m,n)→

{
t = m, UUT = I, V V T 6= I

t = n, UUT 6= I, V V T = I
(economy svd). (3.21)

SVD Interpretation: We can think of the SVD as a recipe for a matrix. However, let’s not
think of a matrix. Let’s think of data. In particular, let the column vector x represent some set of
features (maybe, the movie preferences of a single person across many different categories or movie
rankings). Let’s collect many of these profiles, for you, for me, for Bob, for n people, and then we
stack them up together into a matrix:

A = [xyou xme xBob · · · xn]

If we apply and SVD to this data matrix,
• U is the general shape of the columns, with u1 being the dominant shape
• σ is like the energy which each of these shapes have. Dominant shapes have more energy!
• V is the ratio which you combine these scaled shapes to reproduce the original data. This is

like a recipe!
The SVD has many uses, but one of its uses is to find the dominant shapes, and their as-
sociated energies, for a given set of data (i.e, a matrix). Given the orthonormality of U and
V , we can use the SVD as a numerically robust way to solve overdetermined linear systems.
? Homework 4, Problem 1: Linear System Solution Using the SVD

Recall our solution to the optimal project problem (also known as a linear least squares, as we
will see in later topics) (1.31):

x∗ =
(
ATA

)−1
ATy. (3.22)

Please compute the solution for x∗ in terms of the economy SVD, assuming m > n. There
should only be four terms in the solution, including y. How can you describe this solution? Do
you like it? Why is the m > n assumption needed? Hint: Take the definition from (3.14a),

54

https://en.wikipedia.org/wiki/Linear_least_squares

and “plug it in” to (3.22). Then simplify.

Solution.

(not posted yet)

SVD vs PCA: Data Stacking Conventions

Important Note! The interpretation of the SVD and the PCA depend strongly on how
the data is structured (i.e., is a data observation vector a row vector, or a column vector?).

1. SVD data. This data is usually organized into columns:

Xsvd =

 | | |
x1 x2 · · · xn

| | |

 . (3.23)

2. PCA data. This data is usually organized into rows:

Xpca =


− xT

1 −
− xT

2 −
...

− xT
n −

 . (3.24)

55

? Homework 4, Problem 2: SVD Transpose

Assume Xsvd and Xpca are the same data matrices (just, transposed). Take the (economy)
SVD of both. What is the relationship between the singular values of these data matrices?
How about the singular vectors?

Solution.

(not posted yet)

3.2.2 Low Rank Approximation and the Eckart–Young Theorem

The Eckart–Young (or, more properly, Eckart-Young-Mirsky) Theorem is amazing. It answers
the following question: what is the best low-rank (i.e., rank k) approximation for a given matrix?
There is actually a solution to this question. To understand this question, let’s define Ak as a low
rank approximation of A:

A =

n∑
i=1

σiuiv
T
i (3.25)

Ak =
k∑

i=1

σiuiv
T
i , k ≤ n. (3.26)

We observe that Ak is rank k (meaning its nullspace is n − k). We can see this by considering,
e.g., a rank-2 matrix:

A2 = σ1 u1v
T
1︸ ︷︷ ︸

rank 1

+σ2 u2v
T
2︸ ︷︷ ︸

rank 1

. (3.27)

56

Since A2 is written as the sum of two rank 1 matrices, and since these two matrices have orthogonal
spans§, it is necessarily of rank 2.

We must also define a matrix norm. This is not the same as a vector norm.. A matrix norm
considers the matrix as a mapping, and it asks, what is the largest possible mapping this
matrix can provide? We can measure a mapping by taking a matrix-vector product, and then
taking a vector norm: maxx ‖Ax‖p. But wait.. this can explode, if we just choose larger and larger
values of x! So, let’s normalize the solution based on the size of the chosen vector:

‖A‖p , max
x6=0

‖Ax‖p
‖x‖p

: Matrix Norm. (3.28)

The matrix 2 norm, for example can be defined as

‖A‖2 = max
x6=0

‖Ax‖2
‖x‖2

(3.29a)

= max
‖x‖2=1

‖Ax‖2 (3.29b)

= σmax (A) . (3.29c)

We will not derive this, but it’s true (just choose x so coincide with the largest singular vector).
So, if we know the largest singular value of a matrix, we know its two norm! Using this machinery,
we can now present Eckart–Young.

Remark 2 (Eckart–Young Theorem). Let A ∈ Rm×n and let Ak be its low-rank approxima-
tion via (3.26). For any matrix B ∈ Rm×n of rank k,

‖A−Ak‖2 ≤ ‖A−B‖2 . (3.30)

In other words, Ak is the best possible low-rank (rank k) approximation of A.

We present the proof below, similar to the one presented in [4], which uses contradiction to
prove that a better approximation cannot exit. This proof uses the concept the nullspace (or
kernel) of a matrix. As a reminder the nullspace is just the space of vectors which satisfy 0 = Ax.

N (A) = {x |Ax = 0, x 6= 0} : Matrix Nullspace. (3.31)

The dimension of the nullspace, dim(N (A)), is just the largest number of linearly independent
vectors which satisfy Ax = 0.

§We know this because the columns of these rank 1 matrices are orthogonal to each other. Consider this:(
u1v

T
1

)T (
u2v

T
2

)
= v1u

T
1 u2v

T
2 = v10v

T
2 = 0.

57

Proof (Eckart–Young Theorem). First, we consider the matrix 2-norm of the difference be-
tween A and its low-rank approximation Ak:

‖A−Ak‖2 =

∥∥∥∥∥
n∑

i=1

σiuiv
T
i −

k∑
i=1

σiuiv
T
i

∥∥∥∥∥
2

(3.32a)

=

∥∥∥∥∥
n∑

i=k+1

σiuiv
T
i

∥∥∥∥∥
2

(3.32b)

= σk+1, (3.32c)

since σk+1 is the largest remaining singular value. Second, since there are k+1 orthonormal
singular vectors vi associated with the first k + 1 singular values, we know there is a k + 1
dimensional subspace where

‖Ax‖2 ≥ σk+1, ‖x‖2 = 1. (3.33)

We can show this by setting x = vi:

‖Ax‖2 =
∥∥UΣV Tvi

∥∥
2

(3.34a)
= ‖UΣêi‖2 (3.34b)
= ‖Uσiêi‖2 (3.34c)
= σi ‖ui‖2 (3.34d)
= σi, (3.34e)

where êi is a unit vector with a 1 at position i. Third, and finally, we now ask: can there
exist some matrix B, rank(B) = k, such that ‖A−B‖2 < σk+1? In other words, can there be
some matrix B which is an even better approximation of A than Ak? Let’s assume there is.
We know that B ∈ Rm×n (i.e., same size as A), and rank(B) = k. Therefore, the nullspace
of B, N (B), has dimension of n− k. Let’s pick a vector from this nullspace, and multiply it
by the matrix A−B:

‖(A−B)x‖2 = ‖Ax−Bx‖2 = ‖Ax‖2 , x ∈ N (B). (3.35)

Using the Cauchy–Schwarz inequality, we also have

‖(A−B)x‖2 ≤ ‖(A−B)‖2 ‖x‖2 (3.36a)
< σk+1 ‖x‖2 . (3.36b)

Putting these together by equating the RHS of (3.35) and (3.36b), we have ‖Ax‖2 <
σk+1 ‖x‖2 ,x ∈ N (B).

‖Ax‖2 :

{
< σk+1, x ∈ N (B) (n− k dimensions)
≥ σk+1, x ∈ span(VK+1) (k + 1 dimensions).

(3.37)

If we add these dimensions up, we have an n − k + k + 1 = n + 1 dimensional space. This
violates the rank-nullity theorem (i.e., a rank+nullspace = n), so B cannot exist (i.e., it
cannot be a better rank-k approximation of A than Ak).

58

? Homework 4, Problem 3: Best Low-Rank Approximation

You are given matrix A and its SVD.

(a) Using the singular vectors and singular values, write down the best rank-3 approximation
of this matrix. A3 =?

(b) Let’s assume the singular values capture the “energy” associated with the data modes/shapes.
How much “energy”, as a percentage of the full energy, does this rank-3 approximation
capture. Hint: think.

Solution.

(not posted yet)

3.2.3 Principal Component Analysis & the SVD

Principal Component Analysis (PCA) is very similar in spirit to the SVD: it seeks to take some
high dimensional dataset and project it down onto lower dimensions. Typically, the PCA deals
with the de-centered covariance matrix associated with some dataset. Recall the definitions of
variance and covariance (for scalar random variables):

σ2 = E
[
(x− x0)

2
]

(3.38)

σxy = E [(x− x0) (y − y0)] (3.39)

In the same spirit, the sampled covariance matrix, Γ, is constructed via

Γ =
1

n− 1
(X −X0)

T (X −X0) , (3.40)

59

where Γi,j the represents the covariance of features i and j, based on all data samples. The
PCA is then used to identify directions of maximum variance, which are called the principal
components of the data, as depicted in Fig. 7.

Figure 7: Principal Components (NUMXL)

In large datasets, some dimensions are very impor-
tant, but other dimensions are very unimportant (and
potentially, just noise). PCA helps us discover which
dimensions are most important, and it also offers a
very useful encoding/decoding algorithm. When we
apply dimensionality reduction to some data, we do
two central things:

1. First, we encode the data into some latent
space: z = V Tx, where x is some data, V T is
the PCA transformation, and z is a compressed,
“latent” representation of the data.

2. Second, we drop some of the data. There is no
free lunch folks: if we want to compress data,
in general, we need to lose something. Our as-
sumption, though, is that the thing we drop is
not important enough to keep.

After we encode and reduce the data, we can then decode the data. Decoding applies a reverse
transformation. Note: this is not a lossless decoding. Through encoding, something was lost that
we can never, ever get back (unless our transformation is fully invertible, but that defeats the point
of dimensionality reduction). From the encoding/decoding perspective, we can define

z = V Tx : encode (3.41)
x̂ = V V Tx : decode, (3.42)

We then ask, what is the best V which minimizes the encoding/decoding, or reconstruction,
error:

min
V ∈Rm×k

∥∥X − V V TX
∥∥ . (3.43)

In this problem, X is a data matrix, and V ∈ Rm×k, where k is the dimension of the compressed
latent variable z. We can notice a few things about this formulation. First, the columns of V
should align with the directions of maximal variance of the data (think Fig. 7). Second, these
columns should be orthogonal to each other. Why? If they are not orthogonal, then they won’t be
maximally aligned with the directions of maximal variance. Thus, we may embed this assumption
via

min
V ∈Rm×k, V TV=I

∥∥X − V V TX
∥∥ . (3.44)

It turns out that the solution to (3.44) coincides with taking the first k singular vectors (left or
right, they are the same) from the SVD of the covariance matrix (3.40).

? Homework 4, Problem 4: SVD of a Covariance Matrix

60

https://numxl.com/blogs/principal-component-analysis-pca-101/

Show that the left and right singular vectors of the covariance matrix Γ are the same. Hint:
define the SVD of X −X0 first, then plug this in to the definition of Γ.

Solution.

(not posted yet)

Actually computing the PCA: Despite all this talk of covariance matrices, we don’t have to
actually compute the covariance matrix¶, nor its SVD, to apply the PCA. This is because the right
singular vectors of the covariance matrix, and the right singular vectors of the de-centered data
matrix are the same. Why? (See previous homework problem.) In contrast to a direct application
of the SVD to a data matrix, however, the PCA operates on the de-centered data matrix associated
with this data. To compute the PCA of a matrix using the SVD, we can take the following steps:

1. First, in contrast to the SVD convention, stack your data in vertical rows via (3.24):

X =

 xT
1
...
xT
n

 . (3.45)

2. Next, de-center the data (i.e., subtract off the mean of every feature):

X̄ = X −X0 = X − 1

(
1TX

n

)
. (3.46)

3. Next, take the SVD: X̄ = UΣV T

¶Actually, if you have a really big, diverse dataset, building the covariance matrix can be a very bad idea, because
you tend to lose numerical precision, but it depends.

61

4. The principal components are given by the columns of V (keep as many as you like)
5. Data encodings/projections are given by X̄V .
6. Data decodings/reconstructions are given by X̄V V T

7. Given a new sample (i.e., data not used to build the PCA transformation), subtract the
sample mean (1TX/n), and then compute x̂T

new = xT
newV V T , which is the reconstructed

sample.
Once we run PCA and we compute a the principal component vectors v1, v2, ..., vk, the

reconstruction error associated with data vector x is given by

e =
∥∥x− V V Tx

∥∥
2
: PCA reconstruction error (data = column vector) (3.47a)

=
∥∥xT − xTV V T

∥∥
2
: PCA reconstruction error (data = row vector). (3.47b)

? Example 12: PCA with 1 Principal Component

Let’s say we are given a zero-mean data matrix, X, and we compute its SVD. Let’s now assume
σ1 >> σ2, so we only want to keep 1 principal component, and throw out the rest. Thus, v1
is the direction of the only principal component we keep. Now, we are given a de-centered
sample, xs. Its reconstruction is given by

zs = vT
1 xs (3.48a)

x̂s = zsv1 (3.48b)
=
(
vT
1 xs

)
v1. (3.48c)

Question: when is the reconstruction error zero? Remember, this is the error between xs

and x̂s and is given by

e =
∥∥xs − vT

1 xsv1
∥∥
2
. (3.49)

Let us now set xs as a vector which points in the same direction as v1. We can think of it as
some scaled version of v1, i.e., xs = αv1. Let’s compute the error:

e =
∥∥xs − vT

1 xsv1
∥∥
2

(3.50a)
=
∥∥αv1 − vT

1 (αv1)v1
∥∥
2

(3.50b)
= ‖αv1 − αv1‖2 (3.50c)
= 0, (3.50d)

since vT
1 v1 = 1.

There are two interesting conclusions from this example:
• First, when a data vector exactly points in the direction of a principal component, the

reconstruction error is 0 (i.e., the encoding and decoding steps are lossless).
• Second, the process of reconstruction is exactly the rejection of one vector from another,

which is rooted in projection. Remember projection? See (1.6) for a refresher. Consider
this:

projv1
xs =

vT
1 xs

vT
1 v1

v1 = vT
1 xsv1, (3.51)

62

since vT
1 v1 = 1. Therefore, PCA reconstruction is just the vector project of some

data, x, onto a principal component v.

Viewing PCA as Vector Projections

Given a de-centered data vector x, we may view the application of PCA as the projection of
x onto k principal component direction vectors:

x̂ = V V Tx = V


vT
1 x

vT
2 x
...

vT
k x


= v1v

T
1 x+ v2v

T
2 x+ · · ·+ vkv

T
k x

= projv1
x+ projv2

x+ · · ·+ projvk
x

A quick note: It can be confusing that sometimes we write the PCA reconstruction as XV V T ,
with stacks of data rows (3.24), and sometimes, we write it as V V Tx, with a column vector of
data. However, one is just the transpose of the other, and they are otherwise the same. To see
this, just take the transpose: (

XV V T
)T

= V V TXT (3.52a)
= V V Tx (3.52b)

In the previous example, we showed that when a data vector points in the same direction as a
principal component, the PCA reconstruction error is zero. Nice! In the following HW problem,
we will generalize this result to higher dimensions. This problem will use the concept of a span.
Remember, the span of a set of vectors is just the reachable space of linear combinations of those
vectors:

span{x1,x2, ...,xk} =

{
k∑

i=1

βixi |βi ∈ R

}
(3.53)

? Homework 4, Problem 5: PCA Reconstruction Error (Higher Dimensions

In this problem, we want to show that the reconstruction error associated with a PCA projec-
tion goes to 0 if the incoming data vector lies in the span of a given set of principal components.

Remark 3. Given a de-centered data sample x and k principal component vectors v1, v2, ...,
vk, the PCA reconstruction error is zero if

x ∈ span{v1,v2, ...,vk}. (3.54)

Proof. Show this proof for HW! Hint 1: Remember that the principal component vectors
are orthonormal. Hint 2: Assume x ∈ span{v1,v2, ...,vk}, and then write x =

∑k
i=1 αivi;

now, compute the reconstruction error.

Solution.

63

(not posted yet)

3.2.4 PCA Applications: the Netflix Completion Prize, Eigenfaces, Compressed Op-
timization, and Clustering

In this subsection, we briefly review three, slightly nonstandard examples of how PCA can be useful
in practice. The fourth one (clustering) is more standard.

1. PCA Example: Netflix Completion Prize: Years ago, Netflix hosted a series of competi-
tions where competitors were asked to “fill in” missing data from a data matrix. What was this
missing data? Movie rankings! That is, Netflix wanted to know, if you liked Lord of the Rings,
and The Matrix (both of which you saw and ranked highly), how would you rank Jaws (which
your account has not seen)? The solution to this problem involves a techniques called low rank
matrix completion, which we will not study in this class, but the main idea is that there are a few
universal movie ranking profiles (i.e., stereotypical archetypes) which can “explain” most preference
combinations.

An interesting related problem is this: let’s say you have a data matrix of fully completed
reviews, and you run PCA. Can you use the result to impute missing values from other users? Yes,
you can! First, take the PCA of the data matrix (note: we assume there is no missing data in
this data matrix):

V ← pca(Xmovies). (3.55)

Next, take the new data sample x, and separate it into the parts of the data that are known (x∗)
and unknown/missing (x?):

x =

[
x∗
x?

]
. (3.56)

64

Figure 9: Eigenfaces

Figure 8: Optimal Imputation

Next, pose the following optimization problem: what is the un-
known data x? which allows the full vector x to project onto the
principal components with minimal reconstruction error?

min
x?

∥∥x− V V Tx
∥∥2
2

(3.57)

This projection is depicted in two dimensions in Fig. (8), where x
is known, and y is unknown. The optimal imputed value of y will
align the data vector with the given principal component v. While
this is trivial in two dimensions, it is a nontrivial task in higher dimensions. Details are provided
in the Appendix (see (10.1)-(10.6)), but the solution to (3.57) can be computed directly. Defining
matrix M via [

M1 M2

MT
2 M3

]
= M , V V T , (3.58)

which is partitioned such that the blocks align with the given and missing data via

partition:
[

M1 M2

MT
2 M3

] [
x∗
x?

]
, (3.59)

the solution to the problem of optimal missing data imputation is given as follows.

Optimal Missing Data Imputation

Given a set of principal components V , and the block decomposition V V T in (3.58), the
optimal solution of (3.57) is given by

x? = (I −M3)
−1MT

2 x∗. (3.60)

2. PCA Example: Eigenfaces: The “Eigenface” method decomposes a series of face images into
their principal statistical components. These eigenvectors, or “eigenfaces”, can then be used to
(1) generate new images from the linear eigen basis, or (2) perform facial recognition. In order to
derive a set of eigenfaces, we can first take a series of images, flatten them, and place them into a
data matrix:

xi ← flatten
(
Xface,i

)
, Xface,i ∈ Rm×m,xi ∈ Rm2 (3.61)

X ←
[
x1 x2 · · · xn

]
(3.62)

65

https://en.wikipedia.org/wiki/Eigenface

Applying the SVD to this matrix, UΣV T = X − X0, we can get the first two eigenfaces by un-
flattening the first two left singular vectors:

Ueigenface,1 ← unflatten (U1) , U1 ∈ Rm2 (3.63)

Ueigenface,2 ← unflatten (U2) , U2 ∈ Rm2
. (3.64)

3. PCA Example: Compressed Optimization: This application is much more specialized,
but it’s worth mentioning. Let’s say you have an engineering system with some state, x ∈ Rm. In
power system engineering, this might represent a vector of nodal voltages. Now, take a massive
number of these states, collected over time through e.g., sensor data, or simulation study, and run
a PCA:

V ← pca(Xvoltages). (3.65)

By running a PCA on this data, you are asking, is there a low dimensional space where this data
usually lives? Now, take the first K singular vectors from this PCA, where K << m, and where m
is the dimension of the original state. Defining VK as a matrix with the first K singular vectors,
our assumption is that z = V T

Kx is a pretty good latent representation of the state/voltage vector:

z = V T
Kx (3.66)

x ≈ VKz. (3.67)

Now, we can take an optimization, or simulation, problem we care about, and replace x with VKz
(note, you may also have to re-center the data, but this isn’t shown):

minx cTx →
reduce!

minz (cTVK)z

s.t. Ax ≤ b s.t. (AVK)z ≤ b.
(3.68)

This updated optimization problem now has k decision variables instead of m, so it can be easier
to solve, and feasibility in the original problem is maintained (if the compressed version is feasible).
However, in the resulting solution, x is constrained to live with the span of the columns of VK ,
which can lead to suboptimal solutions. More details on this sort of approach can be found here [19].

4. PCA Example: Clustering: We can also user PCA to solve a clustering problem (or at
least, to make it much easier). The process is this: run PCA on a given dataset. Next, project the
data into the direction of the principal components. Now, in this latent space, cluster data with
e.g., K-Means.

66

4 Linear Regression

When you need to predict a numerical value, or some set of numerical values, based on a
series of known features, linear regression is always, always, always the first modeling tool you
should reach for∗. Linear regression is a model which estimates the relationship between x (an
independent input) and y (a dependent output) through a linear prediction model. Remember: a
model is linear if and only if it satisfies the superposition principle (1.2). In contrast to classification
models, which predict discrete classifications, regression models produce continuous results. Why
should you start with a linear regression model?

• Linear Regression models are, often, “good enough”
• Linear Regression models are easy to train (you can analytically construct the globally optimal

regression model with very little effort)
• You quickly get a sense for “how nonlinear” the system which produced your data actually

is.

4.1 A Gentle Introduction

Consider a model which estimates the income y of an individual. Income is positively correlated
with many predictor variables (class regressors), including age, years of education, and occupation
(which we assume can be quantified). Given some training data set D, we may wish to build a
linear regression model:

ŷ = wTx (4.1)
= w0x0︸ ︷︷ ︸

x0=1

+w1x1 + w2x2 + · · ·+ wkxk : Linear Regression Model (4.2)

where ŷ is an output prediction, and w0x0 represents our bias term. Stacking N inputs and outputs
in matrix X and vector y via

X =


xT
1

xT
2
...

xT
N

 , ŷ =

 ŷ1
...
ŷN

 (4.3)

we may write the predictive model via

ŷ = Xw (4.4)

Our goal is to choose the trainable parameters w such that some loss function associated with
this predictive model is minimized. When it comes to linear regression, mean square error is a
commonly applied loss function (we will see why in the next subsection):

MSE(y, ŷ) = 1

N
(y − ŷ)T (y − ŷ) (4.5)

=
1

N

N∑
i=1

‖yi − ŷi‖22 : Mean Square Error. (4.6)

∗The only exception here might be when you are trying to directly model a system of analytical equations which
are definitely known to be nonlinear: e.g., y = sin(x). However, linear regression is still a helpful benchmark, if
nothing else, and its effectiveness might surprise you!

67

4.2 Least Squares “and All His Friends”

There are many other ways to motivate linear regression. From a probabilistic perspective, we may
recall an example from Topic 2, where measurements from a linear system were corrupted with
Gaussian noise via (2.19):

y = xTw + ε (4.7a)
= w0x0︸ ︷︷ ︸

x0=1

+w1x1 + w2x2 + · · ·+ wmxm + ε, ε ∼ N (0, σ2). (4.7b)

For convenience, we have append a leading 1 to the set of input features in order to easily capture
a model bias term, w0. The likelihood of some data, given this set of model parameters, is

p(y|x,w, σ2) =
1√
2πσ2

e−
(
y−xTw

)2
2σ2 : Likelihood Function for Linear Regression. (4.8)

This is called multiple linear regression, since there are multiple features mapping to a single
ouput prediction. Assuming we have N iid samples collected from this model, the joint likelihood
is familiarly given by the product of the individual observation likelihoods:

p(y|x,w, σ2) =

N∏
i=1

1√
2πσ2

e−
(
yi−xT

i w
)2

2σ2 . (4.9)

When a model has multiple outputs, we call this multivariate linear regression, and the asso-
ciated likelihood function is

p(y|x,w, σ2) =
J∏

j=1

N∏
i=1

1√
2πσ2

j

e
−

(
yj,i−xT

j,iwj

)2
2σ2

j . (4.10)

The following box summarizes the different types of linear regression models.

Linear Regression Model Names

Linear regression models have different names, depending on the number of model inputs
and outputs:

y = w0 + w1x1 : Simple Linear Regression (4.11)
y = w0 + w1x1 + w2x2 + · · ·+ wmxm : Multiple Linear Regression (4.12)

y =

 wT
1
...

wT
n

x : Multivariate Linear Regression. (4.13)

To optimize a multiple linear regression likelihood function, like the one in (4.9), means to find
the set of model parameters which map to the highest probability of the observed data. As usual,
we take the Negative Log Likelihood. Recall from (2.21) that the NLL applied (4.9) will yield

NLL
(
p(y|x,w, σ2)

)
=

N

2
log(2πσ2) +

1

2σ2

N∑
i=1

(
yi − xT

i w
)2

. (4.14)

68

https://en.wikipedia.org/wiki/Death_and_All_His_Friends

When we minimize this model, we typically only solve for the model parameters that we care about:
w. The variance parameter isn’t useful for prediction making. In many cases, this parameter is
known apriori, anyways (i.e., noise strength is known). Thus, minimizing the negative log likelihood
corresponds to solving a problem we call Ordinary Least Squares (OLS):

w∗ = arg min
w

N∑
i=1

(
yi − xT

i w
)2

: Ordinary Least Squares. (4.15)

We may rewrite this in more familiar terms using a data matrix X and the `2 norm:

w∗ = arg min
w

‖y −Xw‖22 , X =


xT
1

xT
2
...

xT
N

 . (4.16)

4.3 Weighted Least Squares

So far, we have assumed the variance of each observed data point is identical. For example, if
a single sensor collects all of the observations, then we can assume that all of the variances are
identical. However, in some cases, the variances will not be equal (different sensors!). Let us
assume the extreme case, where each data point has a separate, but known, variance. Taking the
NLL, the updated minimization problem will take the form

w∗ = arg min
w

1

2

N∑
i=1

(
yi − xT

i w
)2

σ2
i

. (4.17)

We can define a useful matrix, Ω, which puts all of the inverted standard deviations on the diagonal:

Ω =


1
σ1

0 · · · 0

0 1
σ2... . . .

0 1
σN

 : Weight Matrix. (4.18)

Using this matrix, we update weighted minimization problem (4.17):
N∑
i=1

(
yi − xT

i w
)2

σ2
i

=

N∑
i=1

Ω2
ii

(
yi − xT

i w
)2 (4.19a)

= (y −Xw)T Ω2 (y −Xw) (4.19b)
= (Ω (y −Xw))T (Ω (y −Xw)) (4.19c)
= ‖y −Xw‖2Ω , (4.19d)

where this final norm notation is called a “weighted norm”:

‖x‖2W , ‖Wx‖2 = (Wx)T (Wx) : Weighted Norm. (4.20)

The Weighted Least Squares (WLS) problem weights each data sample proportional to its inverse
noise. Samples with high noise (bad data) are down-weighted, while samples with low noise
(good data) are up-weighted.

w∗ = arg min
w

‖y −Xw‖2Ω : Weighted Least Squares. (4.21)

69

Many observation problems (e.g., state estimation) solve a WLS-type problem.

? Homework 5, Problem 1: Weighted Least Squares Solution

If the solution to OLS is w∗ = (XTX)−1XTy, by analogy, what is the solution to WLS problem
(4.21)? Hint: Distribute the weight matrix in the WLS problem, and then think about what
the solution must look like.

Solution.

(not posted yet)

4.4 Linear Systems: Square, Overdetermined, and Underdetermined

We have several times seen the solution to the least squares problem (4.15): w∗ = (XTX)−1XTy.
However, this solution make a key assumption: XTX is invertible! This is generally the case when
we have a glut of data (that is, we have more data than features). However, it is not always the
case. We consider three key situations

Linear System Classification

We can classify a linear system based on the dimensionality of the data matrix:

• Square System: X ∈ Rm×n, m = n: (data and features have same dimension)
• Overdetermined System: X ∈ Rm×n, m > n: (more data than features)
• Underdetermined System: X ∈ Rm×n, m < n: (more features than data)

70

Case 1: Square System. When the data matrix X ∈ Rn×n, we say the system is “square”, and
we can compute the optimal set of linear regression parameters via

w∗ = X−1y : Square System Parameter Solution. (4.22)

This is commonly solved via LU decomposition [1] of the data matrix.

Case 2: Overdetermined System. In this case, which is the most common one in data science
and ML problem, there is “too much” data. Thus, the given set of features will not be able to
“explain” all of it, and there will be some error. The resulting solution is given by

XTXw∗ = Xy : Normal Equations (4.23)
w∗ = (XTX)−1XTy : Overdetermined System Parameter Solution. (4.24)

Numerically, this solution can computed via SVD or QR decomposition (next subsection).

Case 3: Undetermined System. In some situations, an observation of a system may have many
features, but there are only a small number of data samples (i.e., there is not enough data!). In
these situations, we actually have an infinite number of explanations for the data. Why? Think
of is this way: take a single output observation with two input features. Which one “explains” the
data best? There is no way of knowing – we need more data! We explore this more in the following
problem.

? Homework 5, Problem 2: Underdetermined Linear System: Infinite Solutions

Consider a single output observation, y = 10, and a single input feature observation: x1 = 2.5.
We seek to build a linear regression model ŷ = w1x1 + w0 which explains this data. Thus, we
need to solve

{w0, w1} = arg min
{w0,w1}

‖y − (w1x+ w0)‖22 . (4.25)

(a) What is the smallest possible objective value?
(b) Find a numerical solution for w0 and w1 which minimizes the objective.
(c) Find another numerical solution which minimizes the objective.
(d) In fact, since this is an underdetermined system, there are an infinite number of solutions

which can explain the data! Find them all. Write them as a set. Hint: Set the residual
to its minimal values, and then write one parameter in terms of the other.

Solution.

71

(not posted yet)

Since there are an infinite number of solutions in the underdetermined case, which one do we
pick? Based on Occam’s Razor, it can make sense to choose the one with the smallest model
parameters; we call this the least norm solution.

? Example 13: Least Norm Solution for Underdetermined Linear Systems

The “least norm” solution will minimize the size of the model parameters (‖w‖). We may
formulate a least norm problem via

min
w
‖w‖22 (4.26a)

s.t. y = Xw. (4.26b)

Why is the equality constraint present? Since the problem is underdetermined, we know
we can drive error to 0 and fully explain the data. To solve this constrained optimization
problem, we use the set of steps we learned back in Topic 1. First, we formulate the Lagrangian
L = wTw + λT (y −Xw) and build the dual:

max
λ

min
w
‖w‖22 + λT (y −Xw) . (4.27)

Next, we minimize over w, by setting the gradient to 0:

∂L
∂w

= 2w −XTλ = 0. (4.28)

72

Thus, w = 1
2X

Tλ. Plugging this in, we have a maximization problem given by

max
λ

1

4
λTXXTλ+ λT

(
y − 1

2
XXTλ

)
. (4.29)

Once again, taking a gradient and setting to 0, we have

∂L
∂λ

= y − 1

2
XXTλ = 0, (4.30)

yielding y = 1
2XXTλ. Solving for the dual variable vector, we have

λ = 2
(
XXT

)−1
y. (4.31)

Note! We have taken the inverse of XXT . Can we do this? Generally, in an underdetermined
system, yes, we can! Since it collapses a “short, fat” matrix into a short square matrix, which
will generally be invertible. We may now combine the results:

w =
1

2
XTλ (4.32a)

=
1

2
XT 2

(
XXT

)−1
y (4.32b)

= XT
(
XXT

)−1
y. (4.32c)

Thus, we have an analytical solution for the least norm solution! This solution has employed
the so-called right pseudo inverse.

Pseudo Inverse Family!

Given a linear regression “training” problem

min
w
‖y −Xw‖ , (4.33)

the solution strategy, once again, depends on the dimensionality of the data matrix X.

• Standard Inverse: w = X−1y: uniquely eliminates residual error
Ô suitable for square systems

• Left Pseudo Inverse: w =
(
XTX

)−1
XTy minimizes residual

Ô suitable for overdetermined systems

• Right Pseudo Inverse: w = XT
(
XXT

)−1
y eliminates residual error while mini-

mizing the norm of the model parameters
Ô suitable for underdetermined systems

4.5 Analytically Solving Least Squares

As shown in the previous homework problem, the SVD can be used to solve a least squares problem.
We again consider the problem minw ‖y −Xw‖. Next, we write the following, kind of weird,

73

equation:

Xw = y : + Impossible. (4.34)

As we have shown, in many cases, this is an impossible equation. It is like writing

α

[
1
2

]
=

[
2
2

]
: No scalar can solve this.

There is no α which satisfies the equality. The expression, therefore, can be interpreted as, “find the
parameters w which, as closely as possible, satisfy this expression.” Using the SVD of X ∈ Rm×n,
m > n, we have

UΣV Tw = y (4.35)
w = V Σ−1UTy : SVD Least Squares Solution. (4.36)

This solution is valid when the problem is overdetermined, and thus, V V T = I. Before we move
on, let’s reconsider our “impossible equation”. Plugging in our SVD solution for the parameters,

Xw = y (4.37a)(
UΣV T

) (
V Σ−1UTy

)
= y (4.37b)

UUTy 6= y, (4.37c)

since UUT is not the identity matrix in the economy SVD with m > n. Equality sure ain’t what
is used to be.

4.5.1 QR Decomposition

There is another, slightly cheaper factorization which is also commonly used to solve, either, poorly
condition square systems of equations, or overdetermined least squares systems. This factorization
is called the QR decomposition (QR does not stand for anything). Vanilla QR is rooted in Gram
Schmidt: it takes a matrix, and it orthonormalizes the columns (this is matrix Q). We then write
the original matrix columns as a linear sum of the columns of Q (this is matrix R, which is an
upper right triangular matrix).

Given the matrix A ∈ Rm×n, where m > n (more data than features), the reduced, or thin,
QR factorization is given by

A = QR Reduced QR Factorization (4.38a)
Q ∈ Rm×n, QTQ = I Orthonormalized Columns (4.38b)
R ∈ Rn×n Upper Right Triangular Matrix (4.38c)

Using the properties of the QR decomposition, we may re-solve our impossible equation:

QRw = y (4.39a)
QTQRw = QTy (4.39b)

Rw = QTy (4.39c)
w = R−1QTy : QR Least Squares Solution. (4.39d)

74

Since matrix R is an upper triangular matrix, R−1x can be computed very efficiently via the
process of back-substitution. This is briefly reviewed in the Appendix (Sec. 10).

To construct the QR factorization, we first apply a normalized Gram-Schmidt procedure to
the columns of the data matrix X:

z1 = x1 → q1 = z1/ ‖z1‖2 (4.40)
z2 = x2 − projz1x2 → q2 = z2/ ‖z2‖2 (4.41)
z3 = x3 − projz2x3 − projz1x3 → q3 = z3/ ‖z3‖2 (4.42)

...

zm = xm −
m−1∑
j=1

projzjxi → qm = zm/ ‖zm‖2 . (4.43)

Matrix Q is then constructed via

Q =
[
q1 q2 · · · qn

]
. (4.44)

To build the matrix R, which has the structure

R =


r1,1 r1,2 · · · r1,n
0 r2,2 r2,n
... . . . · · ·
0 0 rn,n

 , (4.45)

we ask, “what linear sum of Q columns will reconstruct the data matrix columns?” We
can see this explicitly by writing out the QR product

X = QR =
[
q1 q2 · · · qn

]


r1,1 r1,2 · · · r1,n
0 r2,2 r2,n
... . . . · · ·
0 0 rn,n

 (4.46a)

=
[
(r1,1q1) (r1,2q1 + r2,2q2) · · ·

∑n
i=1 ri,nqi

]
(4.46b)

=
[
x1 x2 · · · xn

]
. (4.46c)

In this formulation, we see that r1,1q1 = x1. To then solve for the numerical value of r1,1, we can
simply take the dot product of both sides with q1 (which, remember, is normalized):

r1,1q1 = x1 (4.47)
qT1 (r1,1q1) = qT1 (x1) (4.48)

r1,1 = qT1 x1 (4.49)

To get x1, for example, all we need to do is scale up q1 by the dot product of q1 and x1:

x1 =
(
qT1 x1

)︸ ︷︷ ︸
r1,1

q1. (4.50)

Similarly, we can reconstruct x2 by summing its projections onto q1 and q2:

x2 =
(
qT1 x2

)︸ ︷︷ ︸
r1,2

q1 +
(
qT2 x2

)︸ ︷︷ ︸
r2,2

q2. (4.51)

75

Generalizing this process, matrix R takes the form

R =


qT1 x1 qT1 x2 · · · qT1 xn

0 qT2 x2 qT2 xn
... . . . · · ·
0 0 qTnxn

 . (4.52)

Rather than computing these entries one by one, we can compute the matrix R directly via

QR = X (4.53)
R = QTX. (4.54)

? Homework 5, Problem 3: QR Decomposition Practice

We want to use QR decomposition to solve the overdetermined system

min
w
‖y −Xw‖ , X =

 1 12
6 −5
8 9

 , y =

 1
3
2

 . (4.55)

(You may do the following math in python, but write down what we ask to see, and show the
backward substitution solution steps).

(a) First, compute the matrix Q = [q1 q2] by applying Gram-Schmidt to the columns of the
data matrix X. Hint: q1 = x1/ ‖x1‖2. For q2, reject q1 from x2, and then normalize.
Now, build matrix R, where R = QTX. Write down the matrix values.

(b) Compute QTy from (4.39c). Now, by hand, solve the system of equations

R︸︷︷︸
4

w︸︷︷︸
??

= QTy︸︷︷︸
4

. (4.56)

This represent two equations and two unknowns. Use backward substitution to solve
this system: start with the last equation, plug in the solution, and then solve the first
equation. Write down your answers for w1 and w2.

Solution.

76

(not posted yet)

4.6 Regularized Linear Regression

Regularization is powerful tool. As previously discussed, it introduces an inductive bias into your
model, “steering” the training (or optimization) towards solutions with certain, hopefully desirable,
characteristics. In this subsection, we review three popular penalty-based regularization methods:
Ridge, Lasso, and Elastic Net†.

4.6.1 Ridge Regression (L2 Norm Regularization)

Statistically, ridge regression poses a standard MLE least squares problem, but it adds a 0-mean
Gaussian prior on the weights of the model (the 0-mean assumption can be relaxed, when helpful).
When this prior is added, the MLE problem becomes a MAP problem. We saw an example of
a Gaussian prior way back in (2.40). Assuming we have M model parameters, and each are
uncorrelated, the Gaussian prior can we written as

p(w) =

M∏
i=1

1√
2πσ2

i

e
− w2

i
2σ2

i : Gaussian Prior on Model Parameters. (4.57)

†These methods are simultaneously referred to as regression methods, and as regularization methods. Both
conventions are fine. I prefer to call them regularization methods; it feels more specific.

77

Taking the NLL‡, we have

NLL(p(w)) = c+
∑ w2

i

2σ2
i

(4.58a)

= c+
∑

λiw
2
i , λi ,

1

2σ2
i

, (4.58b)

where c is a constant. When we add this as a prior for the MLE of the least square problem, we
get (several steps not shown):

w∗ = arg min
w

‖y −Xw‖22 +
∑

λiw
2
i (4.59a)

arg min
w

‖y −Xw‖22 + ‖w‖
2
Λ : Ridge Regression (4.59b)

where ‖w‖2Λ is a “weighted norm”, and Λ is diagonal weight matrix:

Λ =


√
λ1 0 · · · 0
0

√
λ2

... . . . 0
0 0

√
λM

 . (4.60)

Of course, if all models weights are equal λ1 = λ2 = · · · = λM , the problem simplifies to

w∗ = arg min
w

‖y −Xw‖22 + λ ‖w‖22 , (4.61)

which is a more common statement of Ridge Regression. Due to the presence of the L2 norm
penalty on the weights, this is also called L2 norm regulation. What does it do? Simply put, it
applies downward pressure on the size of the weights to make them smaller. Of course, changing
weights from this optimal (MLE) values will incur some extra training loss: your model won’t fit the
training data quite as effectively! However, when problems are poorly conditioned (i.e., sensitive
to data) or underdetermined (i.e., there isn’t enough data), L2 norm regularization speeds up
and robustifies training, and it can also help the model generalize more effectively. There may
be other real-world benefits too: what if model coefficients correspond to energy curtailment in a
power grid, or job layoffs in a large corporation? L2 norm regularization help push down the large
coefficient values and e.g., “spread” the pain of job losses across many departments.

? Homework 5, Problem 4: Ridge Regression Solution

Ridge Regression in (4.61) has a “closed-form” solution given by

w∗ =
(
XTX + λI

)−1
XTy : Ridge Regression Solution. (4.62)

Using unconstrained optimization, show how to derive this solution. Hint: Take the gradient
of (4.61), written as (y −Xw)T (y −Xw) + λwTw, and set it equal to 0.

Solution.

‡NLL refers specifically to the negative log of a likelihood function; however, allowing slight abuse of notation, we
can use it to also mean “take the negative log of this distribution”.

78

(not posted yet)

4.6.2 Lasso Regression (L1 Norm Regularization)

Pushing parameter values to be “small” isn’t always enough: sometimes, we want a majority of
parameter values to be exactly 0! Why would we want this? Why would we want to identify a
sparse set of model parameters?

• Example 1: You are building a model whose coefficients represent the people infected with
Covid back in February, 2020

• Example 2: You are building a model whose coefficients represent the suspected epicenter(s)
of an earthquake

• Example 3: You are building a model whose coefficients represent the sources of a forced
oscillations in an electric power grid.

To achieve sparsity in model parameters, one idea is to use the L0 “norm” from (1.3). As a
reminder, ‖x‖0 simply counts the number of nonzero elements in the vector x. Thus, if we want to
allow for only n nonzero model parameters, we could pose the following regression training problem:

min
w
‖y −Xw‖22 (4.63a)

s.t. ‖w‖0 ≤ n. (4.63b)

The problem with (4.63) is that the L0 “norm” is nonconvex, and further more, it is generally
non differentiable. Thus, getting a good solution, much less the best solution, for (4.63), is very
hard. Instead, we modify (4.63) in two key ways: first, we take the tightest “convex relaxation”
of (4.63b), which turns out to be an L1 norm, and second, we relax the constraint into a penalty,

79

which we “turn up” to drive subsets of model parameters to 0. Both of the changes are reflected
in the following regression formulation:

min
w
‖y −Xw‖22 + λt : Lasso (4.64a)

s.t. ‖w‖1 ≤ t. (4.64b)

We call this formulation the least absolute shrinkage and selection operator, or lasso. Statis-
tically, lasso regression poses a standard MLE least squares problem, but it adds a 0-mean Laplace
prior on the weights of the model (the 0-mean assumption can be relaxed, when helpful). When
this prior is added, the MLE problem becomes a MAP problem. We saw an example of a Laplace
prior way back in (2.43). Assuming we have M model parameters, and each are uncorrelated, the
Laplace prior can we written as

pL(w) =
M∏
i=1

1

2bi
e
−

∣∣wi
∣∣

bi : Laplace Prior on Model Parameters. (4.65)

Taking the NLL,

NLL(pL(w)) = c+
M∑
i=1

|wi|
bi

(4.66a)

= c+
M∑
i=1

λi |wi| , λi ,
1

bi
, (4.66b)

where c is a constant. When we add this as a prior for the MLE of the least square problem, we
get (several steps not shown):

w∗ = arg min
w

‖y −Xw‖22 +
∑

λi|wi| (4.67)

arg min
w

‖y −Xw‖22 + λ ‖w‖1 , : Lasso Regression (4.68)

which has assumed all model weights are equal (this is common in lasso). We note that (4.68) and
(4.64) are equivalent. Why? Well, the minimizer in (4.64) is going to push “down” as much as it
can on the slack variable t, until t = ‖w‖1. Thus, we can just replace t with ‖w‖1. This is called
the “epigraph trick” [15], but it’s beyond the scope of this class.

Solving Lasso: Ridge Regression has a known, and rather beautiful, closed-form solution:
(4.62). Lasso, however, lacks such a solution . Very sad. This lack of solution is driven by
the fact that |x| is inherently non-differential at x = 0. To have a deeper understanding of why
(i) lasso does not have a closed for solution, and (ii) lasso is so good at driving a large set of
model parameters to 0, we need to understand multi-objective optimization, and we need to
understand sub-gradients.

80

Figure 10: A subset of the subgradients of the ReLU activation function (ReLU(x), max(x, 0)).

Multi-Objective Optimization

An optimization problem with competing terms in the objective is referred to as a Multi-
Objective Optimization problem. For example:

arg min
x

f(x) + p(x). (4.69)

At optimality, ∇xf(x)+∇xp(x) ≡ 0 (first order optimality condition). Thus, at optimality,

∇f(x) = −∇p(x). (4.70)

The multi-objective optimization condition (4.70) can help us understand regularization: when
you solve arg minx ‖y −Xw‖22, and then you plug this solution into ridge regression, the gradients
will not be balanced!

‖y −Xw‖22︸ ︷︷ ︸
∇w=0

+ λ ‖w‖︸ ︷︷ ︸
∇w=2λw

, 0 6= −2λw. (4.71)

The optimizer will then push down on the model coefficients, to make the penalty function gradient
smaller, and the loss gradient larger (but negative). Eventually, these two meet in the middle at
the solution (??), where is (4.70) satisfied. To apply this analysis to lasso, we need to define the
subgradient.

Subgradients of a Non-Differentiable Function

When the gradient of a (convex) function f(x) is discontinuous at some point x0, we may
define the subgradients as the set of all gradients which lower-bound function (see Fig. 10):

S = {g | f(x0 +∆x) ≥ f(x0) + g∆x, ∀∆x} . (4.72)

This definition is given for a convex function, but that technical condition isn’t too restrictive.
In the end, a sub-gradient is just a tangent line which lower bounds a function at a point of non-
differentiability.

? Example 14: Subgradient of the Absolute Value Operator

What is the subgradient of the absolute value operator | · | at x = 0? Well, any gradient

81

between −1 and +1 (inclusive) will “lower bound” the function:

∂|x|
∂x

=


−1, x < 0

+1, x > 0

S = [−1,+1], x = 0 : subgradients!
(4.73)

? Homework 5, Problem 5: Subgradient of the ReLU

What is the subgradinent of the ReLU operator at x = 0?

Solution.

(not posted yet)

Level Sets: In Fig. 12, we plot the level sets associated with two regression problems (well,
identical regression problems, but regularized with different norms). A level set is the set of all
input values (e.g., x, y) which map a function f(·) to some constant output c:

C = {x, y | f(x, y) = c} : Level Set (4.74)

Level sets can be likened to the contour elevation lines drawn on a topological map, as shown
in Fig. 11. Each line represents a constant elevation: when you traverse a line, the elevation does
not change! There are two intuitive points that follow:

1. The “loss function” value will not change as you traverse along the level set (i.e., the direc-
tional derivative of the loss function, in the direction of the level set, is 0). As a reminder,
the directional derivative computes the component of a gradient which points in some direc-
tion v:

vT∇xf(x) : Directional Derivative. (4.75)

82

2. The steepest descent direction will be normal (i.e., perpendicular) to the level sets. This
will be shown in the following example.

? Example 15: Level Set of a Multivariate Quadratic

Consider the level set of the circular paraboloid x2 + y2 = z with z ≡ 1. In this example,
we want to show that if you take the directional derivative of the level set, you get 0. In other
words, the gradient of steepest descent is perpendicular to the level set.

The gradient of this function at some point on the level set is given by

∇f =

[
2x
2y

]
=

[
2x

2
√
1− x2

]
= g, (4.76)

since y2 = 1− x2 must be satisfied on the level set.
The level set tangent (i.e., the line that points in the direction of the level set) is given by

x2 + y2 = 1 (4.77)

y =
√
1− x2 (4.78)

∂y

∂x
=

1

2

(
1− x2

)− 1
2 (−2x) (4.79)

=
−x√
1− x2

(4.80)

∂y =

(
−x√
1− x2

)
∂x : Level set tangent. (4.81)

We put this tangent into vector form via

t =

[
∂x
∂y

]
=

[
∂x

−x√
1−x2

∂x

]
=

[
1
−x√
1−x2

]
,

by just setting the partial equal to 1. We may now take the directional derivative along
this level set (in the direction of t):

tT∇f =

[
1
−x√
1−x2

]T [
2x

2
√
1− x2

]
(4.82a)

= 2x− 2x

√
1− x2√
1− x2

(4.82b)

= 0. (4.82c)

Thus, as predicted, directional derivative of the function along the level set is 0: there is no
change in the loss function in this direction!

So, how does lasso induce model parameter shrinkage? When we regularize a least
squares problem with an L1 norm penalty on the weights, the gradient of the loss function
begins to grow in magnitude (but negatively) until it intersects with the gradient of the L1 norm.
Typically, this intersection will happen at a subgradient, as depicted in 12. In short, the subgradeint

83

Figure 12: Depiction of why ridge regression parameters tend to be dense, while lasso parameters tend
to be sparse. The left plot show ridge regression, where the multi-objective optimization problem finds a
stationary solution when the steepest gradients (normal to the level sets) are opposite and equal, à la (4.70).
The right plots shows lasso regression. In this case, the steepest gradients are opposite and equal at a corner
point of the L1 norm, where the gradient is undefined and is thus replaces by a family a subgradients One
of these subgradients is equal and opposite to the gradient of the loss function term, and thus a solution is
found.

of the absolute value operator is diverse at x = 0, so it provides many opportunities for intersection
with a corresponding loss term in a multi-objective optimization problem.

Figure 11: Topological Map Contour Lines

Actually Solving Lasso: Sadly, lasso does not
have a closed form solution, so iterative numerical
techniques are typically employed. Such techniques in-
clude projected gradient descent, proximal gra-
dient descent, coordinate descent, least angle
regression [1], and other more traditional methods,
like simplex and barrier methods (these methods,
however, do not scale as effectively).

? Homework 6, Problem 1: Solving Lasso (by hand!)

In this problem, we want to demonstrate how
“shrinkage” can drive a model parameter to 0. Con-
sider the L1-norm regularized loss function

f(w) = (w1 − 1)2 + (w2 − 10)2 + λ (|w1|+ |w2|) .
(4.83)

This, of course, is lasso.

(a) Set λ = 6 and solve lasso. As usual, take
the gradient, and set it to 0. What are the
values of w1 and w2?

(b) Based on your solution from the first part,
what is the value of λ which will drive both
parameters to 0? This might take a little bit
puzzling to think through. That’s ok.

Solution.

84

https://mapswithnoroads.com/home/topographic-maps-how-to-read-a-map-with-no-roads

(not posted yet)

4.6.3 Elastic Net Regression (L2 and L1 Norm Regularization)

Elastic Net Regularization combines L1 and L2 norm regularization via

w∗ arg min
w

‖y −Xw‖22 + λ1 ‖w‖1 + λ2 ‖w‖2 : Elastic Net Regression. (4.84)

As with lasso, there is no closed form solution for an elastic net regression problem. In general, the
elastic net offers a nice middle ground between ridge and lasso. Lasso can be brittle (especially
in underdetermined problems, or when training samples are highly correlated [3]), and ridge can
unfairly penalize large parameters. Thus, elastic net can offer a good trade-off between these
alternatives.

4.7 Gradient-Based Solutions for Least Squares

In the final subsection of this topic, we investigate how we can use gradient-based methods to
solve least squares problems. This will help serve as a gentle introduction to a technique which is
used to optimize the largest models ever conceived of (i.e., LLMs, whose trainings are guided by
gradients descent steps).

If you are lost on a mountain, and you need to get to the bottom, what should you do? Well,
try taking a step downhill. If you keep moving downhill, eventually, you will get to the bottom.
Which direction will get you there these fastest? Typically, you want to move in the steepest
descent direction (this is the direction that a ball will naturally roll, since the effective pull of
gravity will be strongest). At its core, gradient descent solves an optimization problem like
minx f(x) by taking a step “downhill”:

x← x− η∇x : Gradient Descent. (4.85)

85

Similarly, gradient ascent takes an uphill step to solve a maximization problem (i.e., maxx f(x)):

x← x+ η∇x : Gradient Ascent. (4.86)

Both gradient routines incorporate a step size parameter, η. Properly setting and updating
this parameter as the gradient routines iterate has a profound effect on convergence speed (i.e.,
how long it takes from the gradient routine to solve the min or max problem). We will see several
methods for adaptively updating these step sizes.

Remembering these formulas: Gradient ascent adds the scaled gradient to the state x, while
gradient descent subtracts the gradient. This is easy enough to remember. More fundamentally,
however, a gradient tells us how a variable and its output function are positively correlated: if
you move one, how will this other change? Thus, a gradients says: “if I increase this variables, how
much will my function increase?” Remember the definition of a derivative:

df
dx

= lim
∆x→0

f(x+∆x)− f(x)

∆x
. (4.87)

Analytical Motivation: We can also motivate gradient descent (and ascent) by viewing the
gradient descent step as the solution to a linearized and regularized version of the original problem.
To show this, we take a first order Taylor series approximation of the function f(x) (scalar function
of one variable, x):

f(x) ≈ f(x0) +
∂f

∂x

∣∣∣∣
x0

(x− x0). (4.88)

In the following HW problem, we minimize a regularized version of this function.

? Homework 6, Problem 2: Minimization of a Linearized, Regularized Function

Minimize the following linear function, which has been regularized with an L2 norm penalty:

min
x

f(x0) +
∂f

∂x

∣∣∣∣
x0

(x− x0) +
1

2η
(x− x0)

2 . (4.89)

What is the solution for x? How does this relate to the gradient descent update rule?

Solution.

86

(not posted yet)

Least Squares Gradient: The actual gradient of a least squares loss function (i.e., the loss
function that emerges when we build a linear regression model) is computed via

∂

∂w

(
(y −Xw)T (y −Xw)

)
=

∂

∂w

(
yTy +wTXTXw − 2yTXw

)
(4.90a)

= 2XTXw − 2XTy. (4.90b)

4.7.1 Feature Normalization

Before plugging (4.90b) into a gradient descent routine, it is common to first perform a feature
normalization step. When a set of features arrive, they will all potentially have their own units
(different feature means, ranges, variances, etc). In order to normalize the features, it is common
to (1) subtract the feature mean from the inputs and outputs, and (2) normalize by the
standard deviation of the data (or the range, if you have good reason). Why do we do this? The
main reason is this: gradient descent tends to optimize normalized models much more quickly. If
you don’t believe this, just go try it. By pre-normalizing, we are doing some of the work “for” the
gradient optimizer. It just so happens that this work is easy for us, and hard for the optimizer, so
it’s a good match.

For a simplified example, we consider a model with a single input and a single output: y = f(x).

87

Given vectors of inputs x and outputs y, we first compute the means and variances:

µx =
1

m

m∑
i=1

xi (input mean) (4.91)

σ2
x =

1

m

m∑
i=1

(xi − µx)
2 (input variance) (4.92)

µy =
1

m

m∑
i=1

yi (output mean) (4.93)

σ2
y =

1

m

m∑
i=1

(yi − µy)
2 (output variance). (4.94)

Input and output data are then normalized via

x̂ =
x− µx

σx
, ŷ =

y − µy

σy
, (4.95)

and a model is trained on the normalized data:

min
f
‖ŷ − f(x̂)‖22 . (4.96)

We don’t actually specify the model in (4.96), because the process of feature normalization (also
called batch normalization in future topics) is highly general. When we go to train a neural
network model, we will use a similar normalization process. Once the model is trained and we want
to use or deploy it, we must ensure to (i) normalize all future inputs, and then (ii) de-normalize
the output:

ŷ = f

(
xnew − µx

σx

)
(normalize future inputs) (4.97)

ynew = σyŷ + µy (de-normalize outputs) (4.98)

While this example has been shared for a single-input single-output system, the process generalizes
for any system with m output features and n inputs features. For each feature, we define the
mean and variance, and the we normalize according to (4.95).

"
If you are building a linear regression model, and you normalize the inputs and outputs,

you do not need to include a bias term in the regression model: it will be zero!

ŷ = w0︸︷︷︸
bias coefficient not needed when features are normalized!

+ w1x1 + w2x2 + · · ·+ wkxk. (4.99)

Mean Square Error: The loss function in (4.96) represent the Sum of Squared Error (SSE).
In order to ensure that gradient step size isn’t too large, it can be helpful to instead use Mean
Square Error, which normalizes the sum of the squared errors by the number of data points, N .
For Ordinary Least Squares (OLS), the MSE is given by

L(w) =
1

N
‖y −Xw‖22 : Mean Square Error (MSE) for OLS. (4.100)

Of course, this can (and should) also be combined with feature normalization.

88

Algorithm 4 Full Batch Gradient Descent
Input: Input features X and output features y

1: while Not Converged do
2: Compute the full-batch gradient: ∇w = 2XT (Xw − y)
3: Take a gradient step: w = w − η∇w

4: Compute the loss: L = ‖y −Xw‖22
5: end while

Algorithm 5 Stochastic Gradient Descent
Input: Input features X, output features y, number of data samples N

1: while Not Converged do
2: Reset the set S = {1, 2, ..., N}
3: for i = 1, 2, ..., N do
4: Remove a random element, j, from S
5: Compute the single-sample (j) gradient: ∇w = 2xj(x

T
j w − yj)

6: Take a gradient step: w = w − η∇w

7: end for (end of training epoch)
8: Compute the loss: L = ‖y −Xw‖22
9: end while

4.7.2 Accelerating Gradient Computations with Batching

When we compute the gradient in (4.90b), we are computing the gradient of the loss function
with the full data matrix. This can be very slow when the data set is big (especially when we
start solving neural network training problems). Furthermore, we don’t necessarily need all of this
gradient information to train a really good model. Taking the gradient of the loss function with
respect to the full dataset is called Batch (or Full Batch) Gradient Descent. If instead, we take
the gradient with respect to a random data sample (i.e., one randomly pulled from the full dataset)
and perform a parameter update step, we call this Stochastic Gradient Descent (SGD). Finally,
if we break the data into “mini-batches” and take a parameter update step based on the gradients
of each one of these batches, we call this Mini-Batch Gradient Descent. These routines are
reviewed in Algs. 4, 5, and 6.

Gradient Computation Strategies

? Batch Gradient Descent: The gradient of the full dataset is used at each parameter
update. Accurate 4, but slow 7

? Stochastic Gradient Descent: The gradient of a single, randomly chosen data sample
is used at each parameter update. Fast and doesn’t get stuck in local minima 4, but
erratic convergence 7

? Mini-Batch Gradient Descent: The gradient of a rotating group of data samples is
used at each parameter update. Falls somewhere between BGD and SGD (4/7)

89

Algorithm 6 Mini-Batch Gradient Descent
Input: Input features X and output features y, number of batches B

1: Evenly Sort data into batches {X1,y1}, {X2,y2}, · · · , {XB,yB}
2: while Not Converged do
3: for i = 1, 2, ..., B do
4: Compute the mini-batch gradient: ∇w = 2XT

i (Xiw − yi)
5: Take a gradient step: w = w − η∇w

6: end for (end of training epoch)
7: Compute the loss: L = ‖y −Xw‖22
8: end while

4.7.3 Learning Rate Decay

In order to help gradient descent routines to converge (especially Stochastic Gradient Descent and
Mini-Batch), it is common to use a learning rate decay scheme. A commonly used learning rate
update rule simply multiplies the learning rate by a decay factor at each gradient descent iteration:

η ← 0.99η : Learning Rate Decay. (4.101)

Exponential decay: With this update rule, η will exhibit exponential decay from its starting
value of η0. Why is this? Consider the first order differential equation η̇ = −0.01η. The solution
for this differential equation is given by η = e−0.01tη0. You can check that this is a valid solution
by “plugging it in” to the differential equation:

η̇ = −0.01η → η = e−0.01tη0 (4.102a)
d

dt

(
e−0.01tη0

)
= −0.01

(
e−0.01tη0

)
(4.102b)

−0.01e−0.01tη0 = −0.01e−0.01tη0 4 (4.102c)

Now, let us discretize the differential equation:

η̇ = −0.01η (4.103a)
ηt − ηt−1

∆t
= −0.01ηt−1 (4.103b)

ηt = ηt−1 −∆t · 0.01ηt−1 → ∆t = 1 (4.103c)
ηt = (1− 0.01) ηt−1 (4.103d)
ηt = 0.99ηt−1, (4.103e)

where we set ∆t = 1, without loss of generality. Thus, we have shown that a difference equation
(4.103e) maps back to a continuous time differential equation whose solution is a decaying expo-
nential. Nice! We can also think of η as a variable which “exponentially forgets” its own initial
conditions η0. This will be useful later on.

4.7.4 Faster Gradient-Based Optimization Routines

The vanilla gradient-descent routine has no memory of past gradients, and it makes no predic-
tion of future gradients. It simply looks at the current gradient, and it takes a step. There have
been many proposed modifications which improve the effectiveness of first order gradient routines.
We summarize five of these approaches below, with further details provided in [3].

90

Gradient Routine 1: Momentum The vanilla gradient-descent routine has no memory of past
gradients. The most basic way to improve a gradient based routine is to give the parameter updates
momentum. That is, allow the optimizer to speed up or slow down based on the past history of
the gradients:

Momentum:
{

m← βm− η∇wf(w)
w ← w +m

(4.104)

where m represents the momentum of the parameters, and β is a “friction” parameter which
falls between 0 (high friction) and 1 (low friction). β = 0.9 is typical. When friction is is high, the
momentum is easily lost. The first equation represent an “exponential moving average” (where past
gradient information is forgetting exponentially fast). When there is friction present, Momentum
gradient descent will will reach a “terminal velocity” (i.e., it won’t just accelerate forever, if it is
going down an infinitely long ramp).

? Homework 6, Problem 3: Terminal Momentum Velocity

We can also think of β as a memory parameter: when β approaches 0, the memory of past
gradients is quickly lost. In this problem, we are going to explore the forgetting factor (also
called, exponential forgetting) associated with momentum updates.

(a) Assume a constant gradient γ which does not change, such that mi = βmi−1− γ. Write
mi as a function of mi−2, then mi−3, then mi−n.

(b) Show that, after many iterations, m = − 1
1−βγ. This is called the momentum’s terminal

velocity. Hint: for |β| < 1, the power series expansion of 1/(1− β) is given by 1 + β +
β2 + β3 + ...

Solution.

91

(not posted yet)

Gradient Routine 2: Nesterov Accelerated Gradient Nesterov Accelerated Gradient (NAG)
also uses momentum, but it uses the future gradient, rather than the current gradient, to up-
date the momentum variable:

Nesterov Accelerated Gradient:
{

m← βm− η∇wf(w+βm)
w ← w +m

(4.105)

Thus, NAG knows something about the future. Once again, as β → 0, NAG returns to standard
gradient descent. NAG tends to be faster than momentum.

Gradient Routine 3: AdaGrad When a learning problem has steep gradients mixed with
shallow gradients, decaying the steep gradients will help “point” the parameter updates towards
the global optimum. Adaptive Gradient (i.e., AdaGrad) will do just this§:

AdaGrad:
{

s← s+∇2
w

w ← w − η ∇w√
s+ε

(4.106)

The variable s keeps a running tally of the squared gradients. Subtly, AdaGrad will penalize
gradient terms that are decaying most rapidly, and slow the associated parameter updates down.
This is called adapting the learning rates. AdaGrad generally stops too early, since small gradients
get scaled down to 0 eventually.

? Example 16: AdaGrad Initialization

§Please excuse the abuse of notation in (4.106); ∇2
w, e.g., means element-wise squaring of all vector entries.

92

Assume we are taking the very first step with AdaGrad, and s has been initialized to the zero
vector. What are the very first descent directions? Let’s compute them! Applying the update
rule (4.106), we have

∇2
w ← 0 +∇2

w (4.107)

w ← w − η
∇w√
∇2

w + ε
. (4.108)

The parameter ε is very small, so we can ignore its effect. Thus, our descent directions are
given by

∇w√
∇2

w + ε
≈ ∇w√

∇2
w

= sign (∇w) , (4.109)

since x/
√
x2 = x/|x| = sign(x). Thus, our very first gradients steps are all in the +1 and -1

directions. This seems odd, since it basically ignores the relative magnitudes of the various
gradients, but this is a feature, not a bug, of adaptive gradient routines: aggressive descent
normalizations.

? Homework 6, Problem 4: Understanding Adaptive Learning Rates

Gradients in AdaGrad are scaled according to

gradient scale =
g√∑
i g

2
i

. (4.110)

Consider two features.

(i) The first feature had an initial gradient of 100, and second gradient of 10.
(ii) The second feature had an initial gradient of 15, and a second gradient of 10.

For both of these features, compute the gradient scale (4.110). Even though they both have
the same gradient presently, which one is scaled down more? Why?

Solution.

93

(not posted yet)

? Example 17: AdaGrad’s BIG Problem

Now, assume a set of features are on an infinitely long, flat hill with constant gradient vector
g. We compute the AdaGrad step sizes as n→∞. We first consider the updates to s:

g2 ← 0+ g2 (4.111a)
2g2 ← g2 + g2 (4.111b)
3g2 ← 2g2 + g2 (4.111c)
4g2 ← 3g2 + g2 (4.111d)

... (4.111e)
ng2 ← (n− 1)g2 + g2 (4.111f)

(4.111g)

Now, we consider the update to the parameter vector after n updates to s:

w = w − η
g√
ng2

(4.112a)

= w − η
1√
n

sign(g). (4.112b)

Thus, as n→∞, the parameter step size shrinks to 0: w ← w− η · 0 · sign(g). This highlights

94

the problem with AdaGrad: over time, small gradients get normalized to 0, as previous large
gradients dominate the denominator.

Gradient Routine 4: RMSProp The RMSProp algorithm “fixes” AdaGrad by applying ex-
ponential forgetting (i.e, decay) to the sum of the squared gradients:

RMSProp:
{

s← βs+ (1− β)∇2
w

w ← w − η ∇w√
s+ε

(4.113)

Typically, β = 0.9 is used. Based on the structure of (4.113), β has two interpretations: it is an
exponential forgetting factor, and it also balances the memory of the past squared gradients, vs
the inclusion of new squared gradient contributions.

Gradient Routine 5: Adam Finally, Adam combines features from RMSProp and Momentum.
That is, it keeps tracks of the parameter momentum, and it uses adaptive learning rates. Adam
stands for adaptive moment estimation, and it is the dominant gradient-based optimization routine
used across much of Machine Learning. Its paper is the second-most cited paper in all of machine
learning, racking up hundreds of thousands of citations [20]. It is also the optimization routine
trusted to train modern Large Language Models¶. Its formulation is given by

Adam:



m← β1m− (1− β1)∇w (Thanks Momentum!)
v ← β2v + (1− β2)∇2

w (Thanks RMSProp!)
m̂← m

1−βt
1

(Adam Contribution)
v̂ ← v

1−βt
2

(Adam Contribution)
w ← w + η m̂√

v̂+ε
(Thanks AdaGrad!)

(4.114)

where β1 = 0.9, and β2 = 0.999 are commonly used. The third and fourth steps are de-biasing
steps, where t is the iteration number (since the m and s are initialized at 0, these steps help boost
their values up when t is small – as t grows in size, these steps have no effect). AdaMax (Adam
with L-infinity norm, rather than L2-norm, tracking in step 2) and Nadam (Adam + NAG) are
popular alternatives.

For an excellent visual overview of various gradient-based routines, check out this great
Medium post by Lili Jiang. The associated github repo is here.

¶See page 43 of [21], which specifies the training routines for GPT3. Note: they also use “cosine decay” in place
of, e.g., an exponential step decay from (4.101).

95

https://medium.com/towards-data-science/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://github.com/lilipads/gradient_descent_viz?tab=readme-ov-file

5 Nonlinear Regression

Some models are truly nonlinear. For example, consider the gravitational law:

fij = G
mimj

r2ij
: Gravity! (5.1)

In other words, gravitational force is proportional to the product of masses divided by their distance
square. This model has three input features: two masses and a distances. Given these three features,
do you think you could ever learn a linear regression model to accurately predict gravitational
force? The answer is no: the best model that a linear regression model can provide is a flat
hyperplane. Clearly, (5.1) is not a flat hyperplane.

Here is an idea, though: what if we first encode the nonlinearity into a function, g(mi,mj , rij)?
Let define

gij = g(mi,mj , rij) ,
mimj

r2
(5.2)

where gij is a new variable which g(mi,mj , rij) spits out. Let’s assume we have access to this new
variable when we train out model. In doing so, we have “lifted” our problem (i.e., we have turned a
problem of three variables into a problem of four variables, thus lifting our problem into a higher
dimensional space). By properly lifting the problem, it has actually become linear again! Now, if
we train a linear regression model, it will probably look like the following

fij ≈ [G] gij + [0]mi + [0]mj + [0]rij + 0, (5.3)

where feature coefficients are in parenthesis. We call a nonlinear function like (5.2) a kernel, and
we say that (5.2) kernelizes our problem.

Kernelization and Lifting

? Lifting: If a nonlinear function or transformation produces a new feature, or a new set of
features, we say the associated model has been lifted.
? Kerelization: We call the process of passing a feature, or a set of features, through a
nonlinear function or transformation kernelization.

Take these definitions with a grain of salt: both terms can have slightly
different meanings, depending on the context.

96

? Homework 6, Problem 5: Kernelizing A Quadratic Equation

Given the initial position x0, velocity v0, and acceleration a0 of a projectile, the equation of
its current position is a quadratic function of time:

x(t) = x0 + v0t+
1

2
a0t

2. (5.4)

Let’s say you want to build a model of the position without knowing this physics, and your
only input is t (assume x0, v0, and a0 are constants that your learn). Kernelize this function
(you will need to use something like (5.2)). What are the effective linear regression model
coefficients? Note: there can be more than one way to do this.

Solution.

(not posted yet)

5.1 Polynomial Regression

Often times, we suspect there is a nonlinear relationship between a set of inputs and outputs, but
we don’t know which kernel functions to use! In these cases, we can apply a series of polynomial
kernel functions, and apply all of them. For single input, we define

φ(x) = [1, x, x2, ..., xD]T , (5.5)

for a polynomial regression model of degree D [1]. In multiple dimensions (i.e., where we want to
kernelize the higher order bilinear terms (i.e., x1x2 is called a bilinear product), we may compute

φ(x1, x2) = [1, x1, x
2
1, x2, x

2
2, x1x2]

T , D = 2. (5.6)

97

Tools like scikit-learn’s PolynomialFeatures will generate these polynomial features for you. Clearly,
the dimensionality of the new feature set quickly explodes if you simultaneously kernelize all features
in a dataset (with even a moderate degree. In fact,

number of features: (N +D)!

D!N !
, D = degree, N = original feature count,

which grows combinatorially∗ [3]. Once these features have now been kernelized, we can train a
linear regression model on them! We call this process polynomial regression:

min
w

∥∥y −wTφ(X)
∥∥2
2
: “Polynomial” Regression. (5.7)

We note that polynomial regression is a bit of a misnomer, since we are actually solving a linear
regression problem in the end. It is important to heavily regularize polynomial regression so
that we don’t overfit.

∗Combinatorial growth makes exponential growth look like a cute little chipmunk. Always beware of
combinatorial explosion!

98

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://en.wikipedia.org/wiki/Combinatorial_explosion

Algorithm 7 Polynomial Regression
Input: Input features X and output features y; kernelization degree D
Output: Trained model

1: Suitably Kernelize the data via φ(X)
2: Solve a linear regression problem (5.7)

Return: Regression model parameters w∗

? Homework 6, Problem 6: Polynomial Regression Regularization

Just like linear regression, we can regularize the training of polynomial regression models.

(a) What happens to training error as D (i.e., the kernelization degree) grows in size?
(b) Why do you think regularization of polynomial regression is so important (e.g., as com-

pared to linear regression)?

Solution.

(not posted yet)

5.2 Sparse Identification of Nonlinear Dynamics (SINDy)

Regularization is a hugely important aspect of polynomial regression. In this section, we discuss a
generalized version of polynomial regression which uses lasso regularization to sparsely select
the most likely kernel functions out of a large candidate set.

99

Proposed by Steve Brunton† et al. [22], Sparse Identification of Nonlinear Dynamics
(SINDy) applies a regularized regression procedure to identify the nonlinear functions which pro-
duce a set of dynamical time series data. This is not a class on nonlinear dynamics, but SINDy
can be used for identifying the underlying models which produce many types of time series sequence
data. The ultimate goal here is parsimony: start with a large candidate set of nonlinear kernel
functions (we also call these basis functions), and then only select a very small subset which, hope-
fully, map back to a real-world “physics-based” model. The main motivation here is to re-discover
the analytical structure of physics-based systems; for example, we might want to re-discover

• Navier-Stokes (fluids)
• Maxwell’s equations (electromagnetics)
• Celestial mechanics (gravitational forces)
• Schrödinger equation (quantum!).

5.2.1 Nonlinear Dynamics and Time Series Data

We now offer a very quick primer on dynamical systems and time series data. Consider the set
of ordinary differential equations (ODEs)

ẋ = f(x) : Ordinary Differential Equations, (5.8)

which mean, “take a state vector, pass it through a set of functions f , and this will give you how
the state is changing.” This derivative information is then used to update the state vector as it
evolves along some trajectory. Some examples of nonlinear dynamical systems are given below:

Cubic Oscillator:
ẋ = −0.1x3 + 2y3

ẏ = −2x3 − 0.1y3

∣∣∣∣
Hopf bifurcation:
µ̇ = 0
ẋ = µx+ y − x(x2 + y2)
ẏ = µy − x− y(x2 + y2)

∣∣∣∣
Electric Power system:
δ̇i = ωi

ω̇i = p̂i−d̂iωi−
∑

B̂ij sin(δi−δj)
∀i ∈ I.

Generally, there is no closed-form solution for most nonlinear differential equations, so we use nu-
merical approximations. One of the simplest approximations is called Forward Euler Integration.
Taking a forward difference approximation of the time derivative, we have

xi+1 − xi

∆t
= f(xi) (5.9)

xi+1 = xi +∆t · f(xi) : Forward Euler Integration. (5.10)

From this integration scheme, time series data naturally emerges:

x1 = x0 +∆t · f(x0) (5.11a)
x2 = x1 +∆t · f(x1) (5.11b)
x3 = x2 +∆t · f(x2) (5.11c)

... (5.11d)

? Homework 7, Problem 1: Forward Euler Applied to an Exponential

†As a brief aside, the first SINDy paper (and many papers by Brunton) is a wonderful example of high-quality
research. No Theorems, no fancy math, just good ideas, explained clearly, with good visuals.

100

Consider the exponential decay ODE

ẋ = −x. (5.12)

(a) Write down the forward Euler mapping, which maps xi to xi+1, for this system.
(b) Starting at x0 = 10 with ∆t = 0.1, compute x1, x2, and x3. Are these increasing or

decreasing?

Solution.

(not posted yet)

5.2.2 SINDy Regression

Given a set of time series measurements and gradients, our goal is recover the dynamical equations
which produced said measurements. As an example, we may consider the dynamical equation
ẋ = −x2, where the dynamics are unknown (i.e., we only have ẋ and x. Next, we build a
regression model, where four candidate kernels are chosen (note: not all of these kernel functions
are polynomial – SINDy considers a larger swath of potential basis functions):

ẋ = [w1]x+ [w2]x
2 + [w3] sin(x) + [w4] cos(x). (5.13)

Given enough data, a regression solver should identify the following coefficients:

ẋ = [0]x+ [−1]x2 + [0] sin(x) + [0] cos(x). (5.14)

We see that this solution is sparse, in the sense that it was able to identify a single kernel/basis
function to explain the output observations. The other basis functions were driven to 0. Given a

101

set of state measurements, though, how do we compute the gradients ẋ? The rate of change of a
variable is usually not a directly observable measurement. To estimate this rate-of-change‡, we can
use a finite difference method, like forward Euler: ẋ(t1) ≈ x(t1)−x(t0)

∆t .
Higher Dimensions: To extend this problem to higher dimensions (i.e., a system with n

states and m time steps), we define the data matrix X and its approximated gradient Ẋ.

X =


x1(t0) x2(t0) · · · xn(t0)
x1(t1) x2(t1) · · · xn(t1)

...
...

x1(tm−1) x2(tm−1) · · · xn(tm−1)

 (5.15)

Ẋ ≈


x1(t1)−x1(t0)

∆t
x2(t1)−x2(t0)

∆t · · · xn(t1)−xn(t0)
∆t

x1(t2)−x1(t1)
∆t

x2(t2)−x2(t1)
∆t · · · xn(t2)−xn(t1)

∆t...
...

x1(tm)−x1(tm−1)
∆t

x2(tm)−x2(tm−1)
∆t · · · xn(tm)−xn(tm−1)

∆t

 . (5.16)

Next, we kernelize the states with a series of pre-chosen basis functions. We kernelize this matrix
using the function Φ(·). For example, we can kernelizes two states (x1 and x2) with degree two
polynomial terms via

Φ(X) =


1 x1(t0) x2(t0) x21(t0) x22(t0) x1(t0)x2(t0)
1 x1(t1) x2(t1) x21(t1) x22(t1) x1(t1)x2(t1)
...

...
...

...
...

...
1 x1(tm−1) x2(tm−1) x21(tm−1) x22(tm−1) x1(tm−1)x2(tm−1)

 : (example).

(5.17)

Next, with slight abuse of notation, we pose a lasso-regularized regression problem:

min
W

∥∥∥Ẋ − Φ(X)W
∥∥∥2
2
+ λ ‖W‖1 : “SINDy” Regression, (5.18)

where the coefficient matrix W is generally given by

W =
[
w1 w2 · · · wn

]
. (5.19)

In this matrix, w1 are the model coefficients associated with state x1(t), etc. Of course, (5.18) can
be broken up, so that the model parameters associated with each state are solved for independently:

min
wi

∥∥∥Ẋi − Φ(X)wi

∥∥∥2
2
+ λ ‖wi‖1 , ∀i ∈ {1, 2, ..., n}. (5.20)

This, of course, is a regularized linear regression problem, and it can be solved as a standard lasso
problem (i.e, despite the specific application, there is nothing inherently different about (5.20) and
the canonical lasso problem (4.68). SINDy is nicely depicted in Fig. 13, where the sparse model
coefficients of a Lorenz attractor are recovered. In this example, we note that SINDy is able to
recover the exact model parameters associated with the Lorenz attractor; see [22] for more
details.

? Homework 7, Problem 2: SINDy and Overfitting

‡The original SINDy paper uses a method called Total Variation Regularization Derivative (TVRD).

102

Figure 13: Visual depiction of SINDy, from the original paper [22].

Assume you have some simulated data x(t). With a regression tool like SINDy, we are hoping
to exactly reconstruct a given time series data sequence. See, for example, the two images
in Fig. 13, where the “True Lorenz System” dynamics are almost exactly replicated by the
“Identified System”. Therefore, is overfitting still a risk? You can’t fit data any more perfectly
than an “exact fit”, so why regularize with lasso? Provide some thoughts.

Solution.

103

(not posted yet)

104

6 Classification Methods
In this section, we pivot from regression models (i.e., models which predict continuous numerical
values) to classification models (i.e., models which predict the discrete classification of a sample
based on a set of input features). There are many classification tools, but this section with focus
on three of the most foundational methods: K-Nearest Neighbors (KNNs), Logistic Regression,
and Support Vector Machines (SVMs).

6.1 K-Nearest Neighbors

So far, to make predictions, we have focused on building, and then training, “parametric” models.
However, let’s now assume I am completely allergic to models. Now assume I have access to
a set of labeled training data, and I need to use it to classify an incoming data point. If I am
allergic to models, what is the simplest thing I can do? The simplest thing is this:

1. Take an incoming data point
2. Find the “closest” labeled data point in the training set
3. Classify the incoming point based on its closest neighbor classification (i.e., assume it will

have the same classification)

Parametric and Nonparametric Models

? Parametric: A model is generally called parametric if the model size does not scale with
the number of training samples (examples: linear regression, neural network).
? Nonparametric: A model is generally called nonparametric if the number of model
parameters scales with the number of training samples (example: K-Nearest-Neighbors, full
depth decision trees). The model parameters are therefore, potentially, infinite dimensional.
Nonparametric models are said to make fewer assumptions about the structure of the
underlying data generating distribution, since they are more flexible.

The procedure of having classifying based on the classification of the nearest neighbor, however,
is not robust to label noise nor to samples which fall right next to decision boundaries. To
robustify this procedure, we may instead look at the classifications of the K-nearest neighbors.
We then have these neighbors “vote” on the classification of an incoming point (where every point
votes according to their own classification). Whichever classification has the most votes wins. For
example, in Fig. 14, any point whose K-nearest neighbors are the seven points in the box would
be classified as a 0 since there are more 0’s than 1’s.

Figure 14: KNN Points

We can also think of the KNN vote as the construction of a mini
Bernoulli probability distribution. To build this probability distribution,
we use the indicator function from [1]:

I (e) =

{
1, e is true
0, e is not true.

(6.1)

Using this indicator function, we say that the probability of an ith in-
coming point being classified as c, given the labeled training data D,

105

is

p(yi = c | D) = 1

K

∑
n∈NK,i

I (yn = c) , (6.2)

where NK,i is the set of K nearest neighbors associated with incoming feature set xi. (6.2) is just
a fancy way of saying: “look at the closest neighbors and sum the number of classifications into
buckets. Assign the probability of the new classification based on these normalized sums.”

? Homework 8, Problem 1: KNN Probability of Classification

Assume Fig. 14 shows the K-nearest neighbors associated with an incoming data point.

(a) Apply (6.2) to the points in Fig. 14 to compute p(yi = 1) and p(yi = 0). Which one is
higher? What do the probabilities sum to?

(b) The solution here actually corresponds to the MLE for a Bernoulli Distribution. Based
on your solution from (a), construct the Bernoulli distribution from (2.24). Hint: in
(2.24), x is the binary classification. What is θ? It is the probability of p(yi = 1).

Solution.

(not posted yet)

We summarize KNN in Alg. 8. The training of KNN is simple: just store all training data in
memory! There is no other training involved. All of the hard work occurs at test/inference time.

6.1.1 K-Nearest Neighbors Drawbacks

We mention three key drawbacks associated with the KNN method [2].

106

Algorithm 8 K-Nearest Neighbors
Input: Training data D, unclassified input data point xnew

1: Find the distance di between xnew and each point xi in D.
2: Sort all distances (shortest to longest), and put into vector d
3: Build a corresponding classification vector y, such that yi is the classification of the point at

distance di
4: Take the first K elements of y
5: Set ynew to the most common classification in {y1, y2, ..., yK}

1. Inductive Bias. KNN simply looks for the closest points to a new data points. However,
it has no capacity to distinguish important features from unimportant features. Thus, if you ask
KNN to predict someone’s height, and you given it input features of “age” and “favorite number”,
it will think these two features are equally important! Clearly, though, “favorite number” has no
effect on/capability for influencing a person’s height.

2. Feature Scaling. KNN is exclusively concerned with distance as a metric for making
classification decisions. Thus, it is very sensitive to units and feature scaling. As shown in [2], for
example, if the units of a feature that are usually expressed in mm are converted to cm, then the
associated dimension can effectively disappear (since the data can become compressed into a very
narrow channel, and all sense of distance in that dimension is lost).

3. Scalability in High Dimensions. KNN is a lazy method. At training time, KNN stores
all training data in memory, but it doesn’t do anything else! At test/inference time, it goes to work,
finding the closest K points. In high dimensions, this can become a very cumbersome task. More
fundamentally, though, weird things start to happen in high dimensions [2]. In particular, assume
you have some randomly distributed data between the numbers 0 and 1. In order to capture 10%
of this data:

• In 1 dimension, you just need to study 10% of the line to capture 10% of the data (statistically)
• In 2 dimensions, you need to capture 31.6% of the dimensions, since (0.316×0.316)/12 = 10%
• In 3 dimensions, you need to capture 46.4% of the dimensions, since (0.464 × 0.464 ×

0.464)/13 = 10%

This trend continues, and you end up needing to look very far away to find the “nearest neighbors”
in high dimensions! Heuristic methods, like clustering, hashing, and dimensionality reduction, help
to oversome these challenges.

6.2 Logistic Regression

Logistic regression is the “classification version” of linear regression. Under the hood, it trains a
linear regression model, but this regression model doesn’t predict continuous outputs; instead, it
encodes something called a linear decision boundary. Nonlinear activations functions then map
the distance from this decision boundary to classification probabilities.

6.2.1 Binary Classification

In binary classification tasks, logistic regression wraps a sigmoid (or a logistic) activation function
around the output of a linear regression model. Given some input features x, logistic regression

107

computes a probability:

z = wTx : (Apply Linear Regression Model) (6.3)

p =
1

1 + e−z
: (Apply Sigmoid Activation Function). (6.4)

The output here, p, corresponds to the probability§ (i.e., it falls between 0 and 1) of a given
classification decision (by convention, is the probability of a “1” classification). Combining these
equations, we have the standard logistic regression model, which predicts the probability of an
output classification y, given the regression model parameters w and the input features x:

p(y = 1|w,x) =
1

1 + e−wTx
: Logistic Regression (Binary Classification). (6.5)

Of course, the probability of a 0 classification is just p(y = 0|w,x) = 1− p(y = 1|w,x).

? Homework 8, Problem 2: Probability of a “0” Classification

Consider the logistic regression model (6.5). Show that

p(y = 0|w,x) =
1

1 + e+wTx
. (6.6)

How is this similar/different from (6.5)? Hint: Use p(y = 0|w,x) = 1− p(y = 1|w,x).

Solution.

§We may also interpret the sigmoid activation function (6.4) as the Cumulative Distribution Function (CDF) of a
logistic distribution.

108

https://en.wikipedia.org/wiki/Logistic_distribution

(not posted yet)

More generally, we can write p(y |w,x), y ∈ {0, 1} via

p(y|w,x) =

(
1

1 + e−wTx

)y (
1− 1

1 + e−wTx

)1−y

. (6.7)

Why does this work? Try plugging y in for y ∈ {0, 1}:

p(y = 0 |w,x) = 1− 1

1 + e−wTx
(6.8)

p(y = 1 |w,x) =
1

1 + e−wTx
. (6.9)

Amazingly, we recognize (6.7) as a Bernoulli distribution from (2.24). As a reminder, the
Bernoulli distribution equation returns the probability of an event occurring, or not, based on the
outcome status y (or, in this case, classification of 1 or 0).

6.2.2 Training Logistic Regression Models

How do we train a logistic regression model? The loss function that is commonly used to train a
logistical regression model is called cross-entropy, and it was previously seen in (2.65). Motivating
this loss function is done most easily by considering the continuous Bernoulli distribution [1] defined
in (6.7). Let’s say we have some observed data classification y1, y2, ..., yN and associated feature
vectors x1, x2, ..., xN . The likelihood function associated with this data (assuming a logistic

109

regression model predicts their probabilities) is given by

likelihood function: p(y |w,x) =

N∏
i=1

p(yi |w,xi) (6.10a)

=

N∏
i=1

(
1

1 + e−wTxi

)yi (
1− 1

1 + e−wTxi

)1−yi

. (6.10b)

As we have done may times now, we want to maximize this likelihood function (à la MLE). This
is accomplished, as usual, via application of the Negative Log Likelihood. To simplify the notation,
let us define p̂i =

1

1+e−wT xi
, which is the ith prediction (i.e., probability).

NLL(p(y |w,x)) = − log

(
N∏
i=1

(p̂i)
yi (1− p̂i)

1−yi

)
(6.11a)

= −
N∑
i=1

log (p̂yii)−
N∑
i=1

log
(
(1− p̂i)

1−yi
)

(6.11b)

= −
N∑
i=1

yi log (p̂i)−
N∑
i=1

(1− yi) log ((1− p̂i)) : Cross-Entropy Loss (6.11c)

where, again, yi is either a 1 or a 0, so many of the summation terms are eliminated. To train a
logistic regression model, we minimize this cross-entropy function:

w∗ = arg min
w

−
N∑
i=1

yi log (p̂i)−
N∑
i=1

(1− yi) log ((1− p̂i)) (6.12a)

s.t. p̂i =
1

1 + e−wTxi
. (6.12b)

Inside the cross-entropy function, when the model picks the “wrong” classification for a given
sample, the negative log terms approach +∞ (i.e., the penalty terms will “blow up”). This is
depicted in Fig. 15.

Figure 15: Cross-entropy explosion.

Unfortunately, there is no closed form solu-
tion to (6.12). This is disappointing, since linear re-
gression has such a nice, closed form solution. Gra-
dient descent, therefore, is commonly used to to
train logistic regression models. In order to apply
gradient descent, we can apply backpropagation,
which is essentially the chain rule from calculus. We
now briefly review chain rule. Given a set of sequen-
tial functions

x→ f(x)→ y → g(y)→ z → h(z)→ c, (6.13)

we may “nest” these functions via c = h(g(f(x))).
Then, to find the sensitivity of the output, c, with respect to the input, x, we may solve for the
partial derivatives of each mapping, and then multiple them all together:

∂c

∂x
=

∂c

∂h
· ∂h
∂g
· ∂g
∂f
· ∂f
∂x

. (6.14)

110

We now apply this same procedure in order to compute the gradient of the objective function
in (6.12). First, we split the function into three nested parts:

1. Cross-entropy function: f(p̂) = −yi log (p̂)− (1− yi) log ((1− p̂)).
2. Sigmoid function: p̂(z) = 1

1+e−z = σ

3. Linear regression: z(w) = wTxi.

The gradient we are looking for is ∂
∂wf(p̂(z(w))). We compute this by noting that

∂f

∂p̂
= −yi

1

p̂
+ (1− yi)

1

1− p̂
(6.15)

∂p̂

∂z
= σ(1− σ) (6.16)

∂z

∂w
= xi. (6.17)

Stringing these three together, and noting that σ = p̂ = 1

1+e−wT xi
, we have

∂f

∂p̂

∂p̂

∂z

∂z

∂w
=

N∑
i=1

(
−yi

1

σ
+ (1− yi)

1

1− σ

)
︸ ︷︷ ︸

∂f
∂p̂

σ(1− σ)︸ ︷︷ ︸
∂p̂
∂z

xi︸︷︷︸
∂z
∂w

(6.18a)

=
N∑
i=1

(
−yi

σ(1− σ)

σ
+ (1− yi)

σ(1− σ)

1− σ

)
xi (6.18b)

=

N∑
i=1

(−yi(1− σ) + (1− yi)σ)xi (6.18c)

=

N∑
i=1

(σ − yi)xi. (6.18d)

Thus, we have

∇w =
N∑
i=1

(
1

1 + e−wTxi
− yi

)
xi : Gradient of Logistic Regression Loss. (6.19)

This gradient can be used to numerically optimize (6.12) via gradient descent.

6.2.3 Probabilistic Decision Boundaries

Once we have a training logistic regression model, we may use it to find decision boundaries as-
sociated with specific probabilities. For example, we may find the hyperplane associated with
p = 0.25, meaning any point falling “below” this hyperplane will have a classification probability
of < 0.25, while any point falling “above” this hyperplane will have a classification probability of
> 0.25. To find this hyperplane, (i) take a trained logistic regression model, (ii) set it equal to
some probability 0 < p < 1, and then (iii) solve for the the coefficients. Remember: hyperplanes
generally take the form “wTx+ b = 0”.

? Homework 8, Problem 3: General Expression for Hyperplane of Probability

111

Given a trained logistic regression model,

p =
1

1 + e−wTx
, (6.20)

find the hyperplane associated with some probability p?. What is the “+b” term?

Solution.

(not posted yet)

6.2.4 Nonlinear Decision Boundaries

Just like linear regression, logistic regression may perform poorly when there is a true, nonlinear
relationship between the features and the outputs. In these cases, we say that data is not linearly
separable. To overcome this challenge, we may kernelize the data with, e.g., a polynomial kernel.
For example: φ(x1, x2) = [1, x1, x

2
1, x2, x

2
2, x1x2]

T , D = 2. Next, we plug φ(x) into the otherwise-
standard logistic regression training problem:

w∗ = arg min
w
−

N∑
i=1

yi log (p̂i)−
N∑
i=1

(1− yi) log ((1− p̂i)) (6.21a)

s.t. p̂i =
1

1 + e−wTφ(xi)
, (6.21b)

where the dimension of w will expand to meet the dimension φ(x). This optimization problem
can be solved by any solver which can solve a standard logistic regression problem.

112

6.2.5 Multiclass Classification

In multi-class classification, there can be K potential output classifications. To predict the
classification probabilities, we then employ the softmax function (2.70), which is a generalization
of the logistic (or sigmoid) function in higher dimensions:

sm (z) =


ez1∑
j e

zj → Probability of classification 1
ez2∑
j e

zj → Probability of classification 2

...
ezK∑
j e

zj → Probability of classification K

 , (6.22)

where z is an input vector. Where does this input vector come from? It is the output of a series of
linear prediction models (like linear regression models) which we build inside of the multiclass
logistic function. The structure of the multiclass logistic function follows:

x →



wT
1 x → z1 → ez1∑

j e
zj → class 1 probability: p̂(1)

wT
2 x → z2 → ez2∑

j e
zj → class 2 probability: p̂(2)

...
wT

Kx → zK → ezK∑
j e

zj → class K probability: p̂(K)

: Multiclass Logistic (6.23)

Figure 16: Softmax.

The standard cross-entropy loss function in (6.11c) can only accom-
modate binary classifications (1 or 0). In order to apply cross-entropy
loss in the context of multiclass classification, we first split the data K
times, as demonstrated in Fig. 17. For each split, we introduce a binary
variable y

(k)
i ∈ {0, 1}, which says: “Does sample i belong to classification

k?” Since we do this N times, there will be a total of N ×K of these new
variables. We then use these new binary indicators to pose the following
multi-class cross-entropy loss function:

Lmc =
N∑
i=1

K∑
k=1

−y(k)i log
(
p̂
(k)
i

)
: Multiclass Cross-Entropy Loss (6.24)

where N is the number of training samples, K is the number of potential output classifications.

"
Notationally, we use y

(k)
i as a binary variable indicating class membership in a multiclass

setting, but we use yi, as in (6.12), in a binary classification setting. These are equivalent.

? Homework 8, Problem 4: Binary vs Multi-Class Cross-Entropy

Show that, for K = 2 (i.e., binary classification), the multiclass cross entropy function of
(6.24) is equivalent to the binary cross-entropy function in (6.11c). Hint: What should the
two probabilities sum to? What should the two classification binaries sum to?

Solution.

113

Figure 17: Multiclass classification data splits. Call the set of red circle samples R. The red circles in the
first (i.e., upper-most) split will have y

(k=1)
i = 1, i ∈ R since they belong to this class (k = 1). In the other

two splits, y(k=2)
i = 0, and y

(k=3)
i = 0, i ∈ R.

(not posted yet)

6.3 Support Vector Machines

Support Vector Machines (SVMs) are an essential machine learning tool for finding “separating
hyperplanes” between sets of labeled training data. We consider a set of training data given as

D = {(xi, yi) | yi ∈ {+1,−1}, i = 1, 2, ..., N}, (6.25)

where output labels are designated as +1 or −1. We will parameterize the SVM hyperplanes using
a vector of slopes w and a bias parameter w0 Note: in this section, the bias term is not included
in the vector of slopes w. Future test points will be classified depending on which side of the
hyperplane they fall. Unlike its cousin logistic regression, SVM is not a probabilistic/statistical

114

classifier [1]. It is, instead, a deterministic “widest margin” classifier. SVMs have a beautiful
history, as nicely summarized by Patrick Winston in this clip (skip to 46 minutes).

6.3.1 Hard Margin Classifier

A large margin, also called a “hard margin”, classifier works by choosing a separating hyperplane
which introduces the “largest margin” between points of different classifications. In particular, our
classification prediction will be given by

ŷi =

{
+1, wTxi + w0 ≥ 0

−1, wTxi + w0 < 0,
(6.26)

where xi are the features associated with some new test point, and ŷi is its predicted classification.
We refer to wTx+w0 as a linear decision rule. (6.26) can be stated more succinctly via the “sign”
function, which maps positive and negative values to +1 and -1, respectively:

ŷ = sign(wTx+ w0). (6.27)

In SVM, our goal is to find w and w0 such that the margin between the two classification sets
(training data) is maximized. To do this, we first re-define

f(x) , wTx+ w0. (6.28)

According to (1.18), f(x)
‖w‖2

gives us the signed distance between some input point x and the sep-
arating hyperplane. Additionally, given yi, we want yi(w

Txi + w0) > 0, ∀i (since positive times
positive, and negative times negative, both yield a positive). Thus, we may pose the following
optimization:

max
w,w0

min
i

yi

(
wTxi + w0

‖w‖2

)
, (6.29)

where mini looks for the smallest item in the set by looping over i. (6.29) says, “Find the values
of w, w0 such that the minimum distance to the separating hyperplane is maximized.” Why
minimum? Well, we care most about the points closest to the decision boundary, since these are
the “support vectors”. Next, we pull the denominator out, since it does not depend on i:

max
w,w0

1

‖w‖2
min
i

yi
(
wTxi + w0

)
(6.30)

Rescaling. It is common to rescale this problem into a more standard format¶. To do so, we
note that we can arbitrarily scale the hyperplane equation so that its smallest output (i.e., where
a data-point is closest to the boundary) is “scaled up” to 1:

1

ε

(
wTxi + w0 = ε

)
→

(
1

ε
w

)T

xi +
1

ε
w0 = 1. (6.31)

¶This rescaling does not normalize the data in the problem; you have to do that directly, if want to. Instead, it
puts the problem into a standard format which is easier to manipulate.

115

https://www.youtube.com/watch?v=_PwhiWxHK8o

If this is the case, we know that mini yi
(
wTxi + w0

)
= 1 will be satisfied, and we can repose the

problem with this constraint added explicitly:

max
w,w0

1

‖w‖2
(6.32a)

s.t. yi
(
wTxi + w0

)
≥ 1, ∀i ∈ {1...N}. (6.32b)

Don’t worry: the scaling ε terms are applied to all model coefficients and effectively cancel out‖.
Finally, maximizing 1

‖w‖2
will have the same maximizer (i.e., solution) as the minimizer for

1
2 ‖w‖

2
2. Thus, we update the problem:

min
w,w0

1

2
‖w‖22 : Large Margin SVM Training Problem (6.33a)

s.t. yi
(
wTxi + w0

)
≥ 1. (6.33b)

This is a linearly constrained quadratic program. Furthermore, it is convex, so modern
optimization tools can solve (6.33) to it global optimum in a generally efficient manner. Once this
model is constructed, it can be deployed to classify new points via (6.26).

Minimizing Slopes in the SVM

The vector w represents the slope terms of the SVM decision boundary. Why do we minimize
these slopes? Mathematically, the margin between the points and the decision boundary is
proportional to 1/‖w‖2, so we maximize this while maintaining separation between the
classes.

There is one hiccup, though: (6.33) is not necessarily feasible (i.e., solvable), since the optimizer
may not necessarily be able to find a hyperplane which satisfies the given constraints; it will only be
feasible when the data is linearly separable. Furthermore, even if a data set is linearly separable,
the hard margin classifiers can be very sensitive to outliers. A single outlier can cause very
strange support vectors to be chosen.

6.3.2 Soft Margin Classifier

The soft margin classifier gives the constraints a little bit of “slack” to be violated; however,
this slack is penalized. We apply this nonnegative slack, ξ ≥ 0, to the constraint in (6.33) via
yi
(
wTxi + w0

)
≥ 1− ξi. Thus, if yi

(
wTxi + w0

)
needs to grow smaller than 1, it is “covered” by

the slack. But, the optimizer “pays a price” for this in the objective function:

min
w,w0

1

2
‖w‖22 + c

∑
i

ξi : Soft Margin SVM Training Problem (6.34)

s.t. ξi ≥ 0 (6.35)
yi
(
wTxi + w0

)
≥ 1− ξi, ∀i. (6.36)

‖Just pose the following problem, and see that ε cancels:

max
w,w0

1∥∥ 1
ε
w
∥∥
2

min
i

yi

(
1

ε
wTxi +

1

ε
w0

)
.

116

In this formulation, the slack terms are summed together and then multiplied by c, a penalty
constant. The smaller this constant, the more the SVM will “tolerate” outliers. Of course, the
optimizer will try its best to drive the slack terms to 0 (since it tries to minimize penalties, but
slack can’t go lower than 0).

? Homework 8, Problem 5: Penalty Term Limit

Consider the penalized, soft margin SVM training problem (6.34).

(a) Drive c→∞. Is the resulting problem similar to (6.33)? Why?
(b) How should you choose c? Suggest a procedure.

Solution.

(not posted yet)

6.3.3 The Dual SVM

In this subsection, we are going to take the dual of the SVM problem, which will allow us to
elegantly “kernelize” the problem, as we shall see. We now return to the hard margin SVM (the
following analysis is applicable to soft margin SVM too). The SVM training problem in (6.33) is
posed as a constrained optimization problem. We call this a primal problem (as opposed to
a dual problem). To solve this constrained optimization problem, we can take the steps outlined
after we formed the Lagrangian way back in (1.42). First, we build the Lagrangian by “dualizing”
the inequality constraints:

max
α≥0

min
w,w0

1

2
‖w‖22 +

N∑
i=1

αi

(
1− yi

(
wTxi + w0

))
. (6.37)

117

Here, we have used α as a dual variable instead of µ in order to be consistent with the SVM
literature. Simplifying the objective function, we have

L =
1

2
wTw +

N∑
i=1

αi −
N∑
i=1

αiyiw
Txi −

N∑
i=1

αiyiw0. (6.38)

Next, we apply a first order optimality condition to solve the inner minimization problem, which
we leave as a homework problem.

? Homework 8, Problem 6: Dual SVM Formulation

Show that the dual form of primal SVM problem is given by

max
α≥0

N∑
i=1

αi −
1

2

N∑
j=1

N∑
i=1

αiyiαjyjx
T
i xj (6.39a)

s.t.
N∑
i=1

αiyi = 0, ∀i. (6.39b)

Hint: Take the gradient of (6.38) with respect to the primal variables, set it to 0, and solve.
Then, plug in. Make sure to keep, and use, the ∂L

∂w0
= 0 optimality condition! Second hint:∑

i xi
∑

j yj =
∑

i

∑
j xiyj , by properties of FOIL.

Solution.

(not posted yet)

Unfortunately, we need to stop here. There is no closed-form solution of the maximization
problem in (6.39). But that’s ok, because we have another trick up our sleeves: the kernel trick.

118

A quick note on α: Before moving on, we quickly note that typically, almost all of the α
terms are 0. Why? Well, if we apply the so-called KKT conditions (which are slightly outside
the scope of this class), we have something called a “complementary slackness” condition. This
tell us that, at optimality, the solution to (6.37) satisfies

αi

(
1− yi

(
wTxi + w0

))
= 0, ∀i. (6.40)

But we also know that yi
(
wTxi + w0

)
= 1 is only satisfied at the support vectors. Therefore, at

all nonsupport vectors, yi
(
wTxi + w0

)
> 1. By (6.40), the corresponding αi must satisfy αi = 0.

Thus, αi at all nonsupport vectors must be zero.

6.3.4 The Kernel Trick

There is much written on the so-called kernel trick that we will now introduce. However, one
take on it is this: sometimes, there are hard ways to compute something, and there easier, but
non-obvious, ways to compute something. Take the easier route, when you can! Following is an
analogous example from linear algebra.

Kernel Trick Analogy

Consider the following matrix-matrix-vector product:

y = ABx, (6.41)

where A and B are large known matrices, and x is a known vector. How should we compute
y? If we move left-to-right, we will compute a matrix-matrix product (C = AB), followed
by a matrix-vector product y = Cx. Numerically, this is expensive (matrix-matrix products
are O(n3))! Instead, we can compute y = A(Bx), which is just two matrix-vector products.

• Hard way: y = (AB)x

• Easier way: y = A(Bx)

This “easier way” is analogous to the “kernel trick”. It is cheaper to compute, numerically,
but it computes the same thing, in the end. Note: the kernel trick does not exploit
matrix multiplication; this example is just an analogy of computing something you care
about more easily through clever manipulation.

SVM is powerful tool, but if we want to apply it in the context of nonlinearity, we need to
kernelize the data somehow. When we do this in high dimensions with lots of data, SVM becomes
very hard to solve. For example, if we apply a degree D = 2 polynomial kernelization to a problem
with three input features, we get 10 features we need to train over:

φ(x1, x2, x3) = [1, x1, x
2
1, x2, x

2
2, x3, x

2
3, x1x2, x1x3, x2x3]

T , D = 2. (6.42)

Feature space explosion is a real challenge! However, let’s look very closely at the dual SVM
problem objective function:

N∑
i=1

αi −
1

2

N∑
j=1

N∑
i=1

αiαjyiyj xT
i xj︸ ︷︷ ︸

features

. (6.43)

119

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions

If we change the features that we train on, nothing about this objective function changes, except
for the last term, where we take a dot product of the features. This term, essentially, captures
the similarity of two features. If two feature vectors are orthogonal to each other, it means the
vector are very dissimilar, so xi ⊥ xj → xT

i xj = 0
We may replace this term, therefore, with something called a positive definite Mercer Kernel

function, which also capture some generalized notional of kernelized similarity. We define the
Mercer Kernel as something which takes a dot product of two transformed vectors xi and xj :

K(xi,xj) = K(xi,xj) , φ(xi)
Tφ(xi) : Mercer Kernel, (6.44)

where the transformation is given by φ(xi). Notably, the Mercer Kernel is symmetric: K(xi,xj) =
K(xj ,xi), since the mapping is the same for both vectors.

Kernels and kernels and kernels and ...

The word “kernel” is used many places in mathematics. So far, in these notes, we have
used kernel to mean a nonlinear mapping to a new, lifted feature space. This is
a very general process, and it can be done in many ways. In this subsection, we discuss
Mercer Kernels, formally defined here [23], which are a very specific sort of kernelization
shown in (6.44). This is, admittedly, confusing, because φ(xi) can itself be called a kernel
(it’s kernels all the way down).

So, who cares? We care for the following reason: the kernel mapping of φ(x) might lead a very
high dimensional variable space which we want to embed in the SVM training problem:

N∑
i=1

αi −
1

2

N∑
j=1

N∑
i=1

αiαjyiyj φ(xi)
Tφ(xj)︸ ︷︷ ︸

kernelized features

. (6.45)

However, in 6.45, we never actually use φ(xj) on its own: we only need the dot product φ(xi)
Tφ(xj).

And it turns out, there are faster ways of computing φ(xi)
Tφ(xj) than computing it directly, as

we will see in the following example.

? Example 18: D = 2 Polynomial Kernel for SVM

Let’s say we want to train an SVM classifier, and we want to use a degree D = 2 polynomial
kernel for an input feature space with two features: x1 and x2. Naively, we would just define
the mapping:

φ(x) =
[
1,
√
2x1,
√
2x2, x

2
1, x

2
2,
√
2x2x1

]T
, (6.46)

and then we would plug it in to the SVM objective (the
√
2 terms will be explained soon). For

example, given a sample a and a sample b (for notational clarity), the SVM objective would
compute

φ(a)Tφ(b) =
[
1,
√
2a1,
√
2a2, a

2
1, a

2
2,
√
2a2a1

]T [
1,
√
2b1,
√
2b2, b

2
1, b

2
2,
√
2b2b1

]
(6.47a)

= 1 + 2a1b1 + 2a2b2 + a21b
2
1 + a22b

2
2 + 2a2a1b2b1. (6.47b)

Instead, let’s try something else: let’s just compute the original dot product from the SVM,

120

https://upload.wikimedia.org/wikipedia/commons/4/41/Floral_matryoshka_set_2_smallest_doll_nested.JPG

but let’s square it:(
aTb

)2
=
(
[1, a1, a2]

T [1, b1, b2]
)2

(6.48a)

= (1 + a1b1 + a2b2)
2 (6.48b)

= 1 + 2a1b1 + 2a2b2 + a1b1a1b1 + a2b2a1b1 + a1b1a2b2 + a2b2a2b2 (6.48c)
=
(
1 + 2a1b1 + 2a2b2 + a21b

2
1 + a22b

2
2 + 2a2a1b2b1

)
. (6.48d)

What do we see? (6.47b) and (6.48d) are the same, meaning, for this particular example,

φ(a)Tφ(b) =
(
aTb

)2
. (6.49)

But, what was easier to compute?
(
aTb

)2 is much easier! And it gets even more advantageous
to do this when D = 3, 4, 5....

Is the kernel trick just to save a few pennies on computation? No, it’s more fundamental than
that. For large polynomial degrees, kernel mappings can lead to very high dimensional features!
But, there are some kernels that are literally infinite dimensional. For example, the Gaussian
radial basis function (RBF) is a very commonly used kernel in SVM:

K(xi,xj) = e−γ‖xi−xj‖22 . (6.50)

The Taylor series expansion of (6.50) has an infinite number of terms, meaning the associated
feature space is infinite dimensional. Following are list of commonly used Kernel functions [3];
each one is supported by sci-kit learn. Each one of these kernels, to some degree, measures feature
vector similarity.

1. Linear Kernel: K(xi,xj) = xT
i xj .

2. Polynomial Kernel: K(xi,xj) = (γxT
i xj + r)d.

3. Gaussian RBF Kernel: K(xi,xj) = e−γ‖xi−xj‖22

4. Sigmoid Kernel: K(xi,xj) = tanh
(
γxT

i xj + r
)
.

? Homework 9, Problem 1: A Simple Polynomial Kernel Function

As a classic example, let’s just take the direct square of two input features without any
added bias terms: (

aTb
)2

=
(
[a1, a2]

T [b1, b2]
)2

(6.51a)

= (a1b1 + a2b2)
2 (6.51b)

= a21b
2
1 + 2a2b2a1b1 + a22b

2
2. (6.51c)

What is the kernel mapping φ(·) which would yield φ(a)Tφ(b) = a21b
2
1 +2a2b2a1b1 + a22b

2
2? i.e.,

φ(a) =?, φ(b) =?

Solution.

121

https://scikit-learn.org/stable/modules/svm.html#svm-kernels

(not posted yet)

6.3.5 Mapping a Kernelized SVM Back to a Classification Prediction

To make a prediction with standard SVM, we typically just compute

SVM classification: sign
(
wTx+ w0

)
. (6.52)

But, this means we need to compute w and w0 after we have solved the dual problem. We can
compute w from the dual via the stationarity condition applied to (6.38), and we can compute w0

by taking the support vectors (where yi
(
wTxi + w0

)
= 1 is satisfied) and computing w0 directly.

Which are the support vectors? These are the points where αi > 0. When a constraint becomes
active, its dual variable becomes nonzero, so αi > 0 allows you to find these activated constraints
(i.e., the support vectors). Typically, you average across all support vectors to compute w0:

w0 =
1

ns

N∑
∀i :αi>0

1

yi
−wTxi (6.53)

where ns is the number of support vectors, and 1
yi

= yi (why?).
However, these steps are only relevant for the standard, non-kernelized SVM. When we

deal with kernelized SVM, our classification decision is based on

Kernelized SVM classification: sign
(
wTφ(x) + w0

)
, (6.54)

122

where the kernelized model parameters are given by

w =

N∑
i=1

αiyiφ(xi) (6.55a)

w0 =
1

ns

N∑
∀i :αi>0

yi −wTφ(xi). (6.55b)

But... what if we have used a super high dimensional kernelization? Or an infinite dimensional
one? Is there a simpler way to make a classification decision without computing φ(x) and w
directly? Indeed, there is.

123

? Homework 9, Problem 2: Kernelized SVM Classification

The Kernelized SVM prediction is computed via (6.54). Using (6.55), show that

wTφ(x) =
N∑
i=1

αiyiK(xi,x), (6.56)

and that

w0 =
1

ns

N∑
∀i :αi>0

yi −
N∑
j=1

αjyjK(xi,xj)

 . (6.57)

This last one is a bit messy, but note: this bias term just needs to be computed one time! It
does not depend on the input features x.

Solution.

(not posted yet)

Using these results, we may make Kernelized SVM classification decisions via

K-SVM class: sign

 N∑
i=1

αiyiK(xi,x) +
1

ns

N∑
∀i :αi>0

yi −
N∑
j=1

αjyjK(xi,xj)

 . (6.58)

6.4 Classification Accuracy Metrics

To assess the quality of a trained classification model, it is common to build a Confusion Matrix.
This matrix will be construed using withheld test data (i.e., data that the model has not seen

124

previously). Its typical structure is shown in Fig. 18.

Figure 18: Confusion Matrix and Associated Scores [LinkedIn].

Along with overall classifier accuracy, there are many, many other classification metrics that
have been invented. Two key ones are precision (i.e., accuracy of the positive predictions) and
recall (i.e., ratio of positive instances that are correctly predicted).

? Homework 9, Problem 3: Gaming Precision and Recall

Let’s say you are build a classifier that predicts if a hand written digit is a 5 or not, and you
want to “game” the metrics.

(a) How can you get a perfect precision score? Practically, how would you train your
classifier to achieve this?

(b) How can you get a perfect recall score? Practically, how would you train your classifier
to achieve this?

Hint: use the definitions provided in Fig. 18

Solution.

125

https://www.linkedin.com/pulse/why-accuracy-can-deceptive-product-managers-guide-recall-prasmit-quxhc/
https://en.wikipedia.org/wiki/Confusion_matrix

(not posted yet)

126

7 Trees and Forests
In this section, we consider decision trees, ensemble methods, random forests, bagging and
boosting methods, and XGBoost. The notes in the section are fairly sparse, compared to other
sections; readers are referred to chapters 6 and 7 of [3] for additional details.

Figure 19: Evolution of tree algorithms. [AIML].

7.1 Decision Trees (DTs)

Decision trees are a non-parametric supervised learning tool (meaning, their size generally scales
with the number of input data samples that they train on). Generally, if left unregularized,
decision trees will grow and grow and grow, until they fit a given data set with 100% accuracy. To
make classification or regression decisions, decision inspect a set of feature, and then they “split”
on features which maximize the purity of the resulting subsets of data. Entropy and Gini index
are two common metrics which measure the purity of subset of data.

Given a set of N data samples, we define pk as the probability of selecting an item with
classification k randomly as

pk =
Nk

N
, (7.1)

where Nk is the number of items in the subset with classification k. The Gini index is defined via

Gi = 1−
∑
k

p2k : Gini Index. (7.2)

Entropy, meanwhile, is defined via

H = −
∑
k

pk log2(pk) : Entropy. (7.3)

As explained previously, entropy measures the amount of surprise in a dataset, while Gini index
measure the error rate associated with selecting the wrong item from a group of items.

? Homework 9, Problem 4: Gini Index and Error Rate

You are given a set of N items with varying classifications 1, 2,..., K. You close your eyes and
select one of them at random, hoping for an item with a specific classification. Show that the

127

https://aiml.com/what-is-xgboost-and-how-does-it-improve-upon-standard-gbm/

error rate (i.e., the rate of not getting what you want) is equal to

Gi = 1−
∑
k

p2k. (7.4)

Hint: To solve this problem, we must multiply the probability of classification occurrence
(pk) by the probability of misclassification (1 − pk), and we need to do this for all possible
classifications.

Solution.

(not posted yet)

Given the left and right hand side splits on a given features, the overall “split quality” is given
as the following weighted averages:

split quality (Gini index) = NL

N
Gi,L +

NR

N
Gi,R (7.5)

split quality (Entropy) = NL

N
Hi,L +

NR

N
Hi,R, (7.6)

where N is the overall number of features on both sides, NL is the number of features on the left
side of the split, and NR is the number of features on the right side of the split. Fig. 20 show an
example of split purities: when the decision trees splits on feature 1 (humidity), the Gini index and
entropy scores are both zero, since there is no surprise in the data (the subsets are pure).

7.1.1 DT Regularization

Decision trees are grown heuristically, one level at a time: they scan across all features, then make
the best splitting decision. They do this over and over, until either (i) all of the data is perfectly

128

Figure 20: Decision Tree Split Purity.

fit, or (ii), regularization tells it to stop growing. Two popular regularization techniques are known
as max-depth regularization, which controls the maximum number of tree layers, and max-leaf
regularization, which controls the maximum number of leaf nodes.

7.1.2 DT with Continuous Features

When a feature is continuous in nature (e.g., wind speed), DTs will scan across all possible feature
values from the associated dataset, and then choose to split on the feature value from this set (e.g.,
x ≤ 5.2) that leads to optimal subset purity.

7.1.3 Regression Trees

DTs can also solve regression problems with two simple modifications. First, Gini index and entropy
are replaced with Mean Square Error to measure subset purities. Second, the leaf node output
predictions are made based on the average across the subsets. For example, if training elements y1,
y2, and y3 all flow to the same leaf node j, then the regression prediction made by that leaf node
would be wj = (y1 + y2 + y3)/3.

7.1.4 DT Advantages and Disadvantages

According to [1], DT have the following pros:

• Highly interpretable
• Easily handle discrete + continuous data
• Data normalization isn’t needed
• Robust to outliers
• Scale well; easy to fit big data sets
• Can handle missing data.

However, the also have various drawbacks:

• Training methods are greedy, so test results can be bad
• They can be overly sensitive to data/unstable.

129

7.2 Ensemble Methods

In 1906, Sir Francis Galton attended a fair, where he observed a contest. In this contest, fair-
goers were guessing the weight of an ox. As a pompous member of elite society, he assumed
the aggregation of many uninformed weight guesses, made by uninformed guessers, would
result in an uninformed aggregate guess (i.e., the average would be way off). However, he was
wrong: the average guess was very, very close to the true weight of the ox! This story demonstrates
the “wisdom of the crowd”, and it serves to motivate the idea behind ensemble methods. Such
methods average the predictions across many models. None of these models will be correct 100%
of the time. However, as long as most of the models are correct most of the time, the ensemble
average achieve very good performance.

To show a specific mathematical example of this phenomena, we define a weak classifier as a
classifier whose performance is slightly better than random guessing, or coin flipping.

? Example 19: Aggregation of Three Weak Classifiers

We want to show that the aggregation of three weak, but independent, classifiers will actually
yield a slightly stronger classifier. First, consider a single classifier, whose probability of making
the correct classification is given by

p1 = θ = 0.51 : probability of correct classification. (7.7)

We could, of course, use a Bernoulli distribution to define the probability of a correct classifica-
tion more formally, but let’s just stick with (7.7) for simplicity. Since there is only one classifier,
the space of prediction combinations only has two elements: it makes a correct classification,
or it makes an incorrect classification.

Now, let’s consider three, independent classifiers:

p1 = θ (7.8a)
p2 = θ (7.8b)
p3 = θ. (7.8c)

We assume these classifiers vote on a given classification decision (which is why we consider an
odd number of classifiers – an even number can tie when voting happens!). We can envision the
prediction combination space as a 3-dimensional box. We want to compute the “area” of the
box corresponding to a correct classification vote. This area is composed of the situation where
all three classifiers are correct (θ3), and the area where two are correct and one is wrong (this
can happen three times: 3(1−θ)θ2. Thus, the total probability (area) of a correct classification
vote is given by

pc = θ3︸︷︷︸
all three correct

+3 (1− θ)θ2︸ ︷︷ ︸
two are correct

(7.9a)

= (0.51)3 + 3(0.49)(0.51)2 (7.9b)
= 0.514998. (7.9c)

This isn’t too much better than the individual weak classifier, but it is slightly better.

? Homework 9, Problem 5: Aggregation of FIVE Weak Classifiers

130

https://www.npr.org/transcripts/430372183
https://www.npr.org/transcripts/430372183

We now want to find the probability of correct classification if five independent weak classifiers
vote on a classification decision, where the probabilities of a correct vote are given by

p1 = p2 = p3 = p4 = p5 = θ, θ = 0.51. (7.10)

(a) What is the probability of a correct classification, pc, if these five classifiers vote? Hint:
study the previous example, but extend it to the 5-dimensional case; how many ways
can the five classifiers vote and still get a correct decision? Take the product of the
probabilities of each of these situations.

(b) Assume you want a 90% classification accuracy based on this vote. What value should θ
take? Hint: set pc = 0.9 with θ unknown, and then use e.g., fsolve from scipy.optimize,
or something similar, to solve the equation.

Solution.

(not posted yet)

Voting: Ensemble methods can use hard voting (majority rule) or soft voting (where votes
are weighted by model certainty/probability). They can also combine different sorts of classification
methods (e.g., SVD, DT, KNN, etc), or use homogeneous models (e.g., 10 DTs). Ultimately,
though, the goal is to train models which have some degree of independence. When models make
similar errors, ensemble methods work poorly; but when model make different sorts of error, they
flourish, since the “wisdom of the crowd” can overcome the mistakes of any individual model.

7.3 Bagging

Bagging, which stands for “bootstrap aggregating” trains a series of models of parallel, where each
model is trained on a random subset of the data. With bagging, the data is sampled randomly with

131

Figure 21: Example of two ensembles of models. On the left, the regions where the models perform poorly
overlap, so voting will result in incorrect classification decisions. On the right, there is no overlap between
the regions where the models perform poorly, so hard voting will always result in correct classification
decisions.

replacement (i.e., models can potentially see the same individual data points, but it is unlikely
that any two models will see the exact same random subset of data). Bagging-based methods
help increase the diversity and independence of the models, and the models can be trained in
parallel. These are both major benefits of bagging!

7.4 Random Forests

Random forests are simply an ensemble of decision trees! On top of bagging-based training, we
also sprinkle in a secondary source of randomness: feature splitting. Rather than scanning across
all possible feature splits, and looking for the very best feature to split on, random forest learners
grab a random subset of the features, and then they find the best feature to split on within this
random subset.

7.5 Boosting Methods

Boosting methods start with a weak learner and then sequentially improve the performance
of the weak learner. We consider two flavors of boosting: AdaBoost, which improves learning
performance by boosting the relative weight of misclassified samples, and Gradient Boosting, which
trains sequential models on the residual error of previous models.

7.5.1 AdaBoost

In AdaBoost, we start by equally initializing the weights w associated with a set of training N
samples: wi = 1/N . These weights will tell the optimizer where to focus its attention; initially, all
training samples are equally important. Next, we train a weak learner model F (x) (e.g., decision
tree) to correctly classify points based on a loss function which incorporates these weight somehow.
For example, the exponential loss function

L =

N∑
i=1

wie
−yiF (xi), (7.11)

with true labels yi ∈ {−1, 1} and predicted labels F (xi) ∈ {−1, 1}, will overemphasize correctly
classifying points with large weights. To compute these weights, we take a trained weak learner j,
and then compute the weighted error rate:

rj =

∑
i=incorrect wi∑

i=all wi
, wi = sample weight, rj = error rate for model j, (7.12)

132

where “i = incorrect” is the set of incorrect classifications made by the weak learner. Next, we
compute the model weight associated with this weak learner model:

αj = η
1− rj
rj

, αj = model weight, η = learning rate. (7.13)

As rj → 1, αj → 0. Next, we use this model weight to update sample weights:

wi =

{
wi , sample i = correct
wie

αj , sample i = incorrect.
(7.14)

Using these new sample weights, we jump back to the loss function (7.11) and train a new weak
learner. Finally, once a sufficiently large number of weak learners have been trained, we deploy the
model. The predicted classification, ŷ, is given by

ŷ = sign

 N∑
j=1

αjFj(x)

 , Fj(x) ∈ {−1,+1} (7.15)

for binary classification problems, assuming weak learners make {−1,+1} predictions, or

ŷ = arg max
k

N∑
j:ŷj=k

αj , (7.16)

in multiclass classification problems, where ŷj is the predicted classification of the jth model.
Thus, (7.16) chooses the classification k which has the largest sum over all models weights αj .

? Homework 10, Problem 1: AdaBoost Classification Vote

Assume we have N classification models, each with weight αj , and each makes a classification
prediction, ŷj , from the set of possible classifications {1, 2, ...,K}. Show or explain why (7.16)
yields the correct classification vote decision.

Solution.

133

(not posted yet)

7.5.2 Gradient Boosting

While AdaBoost trains models by boosting the relative importance of incorrect samples, gradient
boosting trains new models based on the residual error of previously trained models. Strong
mathematical motivation is given in [1]. The general approach is this: start with weak learner,
F0(x), and then train a new weak learner, F (x), on the residual errors made by the first
weak learner: r = F0(x)− y. Then, update the ensemble with the new weak learner F (x):

fm(x)︸ ︷︷ ︸
new ensemble

= fm−1(x)︸ ︷︷ ︸
old ensemble

+ η F (x)︸ ︷︷ ︸
new weak learner

(7.17)

where η is a step size, or a shrinkage factor which scales downward the contribution of new weak
learners. What does any of this have to do with gradients (i.e., gradient boosting)? Consider a
regression model Fr0(x) and its mean square error:

e =
1

2
(y − Fr0(x))

2 . (7.18)

The gradient of this error is given by ∂e
∂F = Fr0(x) − y. If we train a new weak learner on this

residual, and then we update the ensemble via (7.17), then we can interpret (7.17) as a gradient
descent step which minimizes the overall prediction error.

7.5.3 XGBoost and LightGBM

Finally, Extreme Gradient Boosting, or XGBoost [24], is a highly optimized version of gradient
boosted random forests. It is both a learning method, which incorporates novel regularization and
accelerated learning tricks, and a software library. It has show dominant performance in Kaggle

134

https://github.com/dmlc/xgboost

ML competitions, and it’s a great choice if you want excellent out-of-the-box ML performance on
a highly complex dataset. Its cousin, LightGBM, is a faster implementation which grows trees in
a slightly different way.

Figure 22: XGBoost Features [Medium].

135

https://github.com/microsoft/LightGBM
https://medium.com/@MrBam44/kaggle-winners-algorithm-xgboost-87819eb300ae

8 Neural Networks
The story of Neural Networks starts in 1943, when McCulloch and Pitts published their paper,
“A Logical Calculus and the Ideas Immanent in Nervous Activity”. In it, they proposed
using a brain-like architecture, composed of neurons and synapses, in order to execute propo-
sitional logic. Foundationally, neurons exhibit an “all or nothing” response; a neuron will only
“fire” and send an electrical signal down its axon only when the electrical stimulus within the cell
body exceeds a certain threshold. Figure (23) shows a biological model of a neuron and the
associated mathematical model we use to mimic its behavior.

Figure 23: Quoted from MRIQs: “A biological nerve cell receives input stimuli from neighboring nerves
through its dendrites. If the sum of these stimuli is sufficient to create membrane depolarization in the
neuron’s cell body, an electrical output signal will be transmitted down the axon to its terminals (which in
turn may stimulate dendrites of other nerves).”

8.1 Multilayer Perceptron

A Neural Network refers to a broad class of learning architectures which roughly mimic the
structure of the brain. The perceptron model, on the other hand, is a very specific NN building
block which, essentially, mimics an individual neuron:

fp(x) = H(wTx+ w0) : Perceptron Model (8.1)

where H(·) is a Heaviside step-function:

H(x) =

{
1 x > 0

0 x < 0
: Heaviside Step Function. (8.2)

It is noted in [1] that the perceptron model (8.1) may be considered a non-probabilistic logistic
regression model (i.e., it just outputs a hard classification decision, rather than a probability).
While the Heaviside step function is non-differentiable, perceptron models may be trained via a
modified gradient descent routine, where we assume the gradient of the step function is just
equal to 1:

wj = wj + η (yi − ŷi)xj : Perceptron Training Routine (8.3)

where yi is a binary classification label, ŷi is the prediction of the perceptron model, and η is a
step size. By looping over all perceptron parameters j and all all data points i, (8.3) is famously
guaranteed to converge [Minsky] when the training data is linearly separable [3].

? Example 20: Training Perceptrons with Modified Gradient Descent

136

https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Propositional_calculus
https://s.mriquestions.com/what-is-a-neural-network.html
https://rodsmith.nz/wp-content/uploads/Minsky-and-Papert-Perceptrons.pdf

Assume we want to train a perceptron model by solving

min
w,w0

N∑
i=1

1

2
(yi − ŷi)

2 = min
w,w0

N∑
i=1

1

2

(
yi −H

(
wTxi + w0

))2
. (8.4)

Taking the gradient of the cost function with respect to wj , we have

gj =
N∑
i=1

(yi − ŷi) (−1)
∂H

∂z
xi, (8.5)

where ∂H
∂z is the gradient of the step function. If we set this to 1, we have gj = −

∑N
i=1 (yi − ŷi)xi,

which is exactly the update rule provided in (8.3) (except with a summation over all data
points).

Perceptrons can perfectly classify linearly separable data sets, since they are essentially lo-
gistic regression models with very sharp probability boundaries. They can also be used to perform
logical calculations, as we will see in the following problem.

? Homework 10, Problem 2: Logical Operations with the Perceptron

Consider the following perceptron model:

z = H (w0 + w1x+ w2y) , (8.6)

where H(·) is the Heaviside operator, and w0, w1, and w2 are tunable model parameters.
x and y are the inputs. Specify these parameters to create a perceptron model of the
following logical operators:

(a) x and y

(b) x or y

(c) x nand y

Hint: the solutions here are non-unique. Find something that works!

Solution.

137

https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Logical_disjunction

(not posted yet)

While simple logic is permissible, more complex logic cannot be performed by a single layer
perceptron model. For example, the logical XOR (exclusive or) operation cannot be performed.
This was famously pointed out by Minsky and Papert in their book Perceptrons: An Introduc-
tion to Computational Geometry. In this case, we need multiple perceptrons (either stacked
on top of each other, or placed sequentially). When we add multiple layers onto a perceptron
model, we call it a multilayer perceptron (MLP):

fmlp(x) = H(WN · · ·H(W2H(W1x+ w1) + w2) · · ·wN) : Multilayer Perceptron. (8.7)

While the MLP has greatly increased representational power over a single perceptron, it is
still non-differentiable. Furthermore, the simple update rule (8.3) proposed earlier will no longer
work. To overcome these challenges, [25] in 1986 proposed two innovations: (1) replacing the
Heaviside step function with a smooth approximation (the logistic/sigmoid function), and (ii)
backpropagating the error through the NN to get the sensitivity of the training error with respect
to various MLP parameters (weights and biases).

8.2 Neural Network Activation Functions

While [25] proposed replacing the Heaviside step function with logistic function, there are many,
many other activation functions that are popular, some of which are listed in the following box.

138

https://en.wikipedia.org/wiki/Exclusive_or
https://rodsmith.nz/wp-content/uploads/Minsky-and-Papert-Perceptrons.pdf
https://rodsmith.nz/wp-content/uploads/Minsky-and-Papert-Perceptrons.pdf

Popular Activation Functions

Popular activation functions include the following:

Linear : y = x = I(x) (8.8a)

Heaviside Step : y =

{
1, x > 0

0, x < 0
(8.8b)

ReLU : y = max(x, 0) (8.8c)

Leaky ReLU : y =

{
x, x > 0

−0.01x, x < 0
(8.8d)

ELU : y =

{
x, x ≥ 0

α(ex − 1), x < 0
(8.8e)

Sigmoid (Logistic) : y =
1

1 + e−x
= σ(x) (8.8f)

Tanh : y =
ex − e−x

ex + e−x
= 2σ(2x)− 1. (8.8g)

Why don’t we just use “linear” activation functions? The following problem considers the
result of just using linear activations.

? Homework 10, Problem 3: “Linear” Activation Functions

Consider the NN mapping

NN(x) = W3I (W2I (W1x+ b1) + b2) + b3 : Rn → R1 (8.9)

where I(·) is the “linear” activation function.

(a) Show that (8.9) reduces to a linear regression model wTx+ w0.
(b) What are w and w0?

Solution.

139

(not posted yet)

8.3 Backpropagation

We use gradient descent, or one of the many variations reviewed in sub-subsection 4.7.4, to train
MLPs and Neural Networks (NNs). To compute these gradients, we use backpropagation, which
is the workhorse of modern ML technology. The process of computing NN gradients generally
has three steps:

(a) First, compute a forward pass through the NN. In a forward pass, we take a data sample,
or a batch of data samples, and we pass them through the NN, computing the NN output(s)
and all intermediate states.

(b) Second, we pass the outputs into the loss function (e.g., MSE, or Cross-Entropy), thus com-
puting the error.

(c) Finally, using chain rule, we move backwards through the network, computing gradients of
the error with respect to trainable network parameters as we go.

The forward pass is necessary due to the nonlinearity of activations functions: the gradient
of a nonlinear function depends on where the function is evaluated (e.g., ∇x2 = 2x). The final step
of using chain rule can be greatly aided by decomposing the NN mapping into a series of easily
differentiable mappings, and then multiplying the results together, as was demonstrated back in
(6.13)-(6.14). Next, we provide a specific example of this.

? Example 21: Gradient of Nested Function.

140

We want to compute the gradient of the function

f(x) = sin
(
ex

2−1
)
. (8.10)

Applying chain rule in one shot can be very error prone. Instead, we decompose the function:

f = sin (z) (8.11)
z = ey (8.12)
y = x2 − 1. (8.13)

Next, we compute the gradient via chain rule:

∂f

∂x
=

∂f

∂z

∂z

∂y

∂y

∂x
(8.14a)

= cos (z) · ey · 2x. (8.14b)

In computing this gradient’s actual numerical value, we notice that we need the values of x,
y and z, which we would compute via a forward pass before applying chain rule.

? Homework 10, Problem 4: Backpropagation Through a 2-Layer NN

Consider the NN mapping

l = (ẑ − σ(w2σ(w1x)))
2 , (8.15)

which passes an input x through a 2-layer NN (σ(·) is the sigmoid activation function), and
into a loss function. We may decompose this mapping into a sequence of operations

l = z25 (8.16a)
z5 = ẑ − z4 (8.16b)
z4 = σ(z3) (8.16c)
z3 = w2z2 (8.16d)
z2 = σ(z1) (8.16e)
z1 = w1x. (8.16f)

Given x = 1, w1 = 2, w2 = −2, and ẑ = 1, use backpropagation, i.e., chain rule to compute
the following by hand:

(a) Compute ∂l
∂w2

.

(b) Compute ∂l
∂w1

.

(c) Now w1 is mistakenly initialized to w1 = 100. Does the gradient ∂l
∂w1

vanish? How
about ∂l

∂w2
? Recompute these gradients and comment.

Hint: use the mapping provided to apply chain rule, and reuse ∂l
∂w2

when you compute ∂l
∂w1

!

Solution.

141

(not posted yet)

AutoDiff Flavors: There are two flavors of NN differentiation (also know as Automatic Differen-
tiation, or Auto-Diff): reverse mode differentiation, and forward mode differentiation. Reverse
mode is generally faster when we have many inputs and one output (which is the case with
NNs, which have a single loss function output), and forward mode is generally faster in the opposite
case: when we have many outputs and few inputs. The next problem will explore conditions
under which one is faster than the other. Generally, though, reverse-diff is faster than forward-diff
for the same reason that A (Bx) is faster to compute than (AB)x.

Jacobians: Finally, in order to perform backpropagation, we need the concept of the Jacobian.
A Jacobian, J , is essentially just a set of gradients stacked in separate columns. When we want to
take the gradients of multiple functions f1, ..., fm, with respect to multiple variables x1, ..., xn, we
get a Jacobian J ∈ Rm×n of the following form (where any given column is just a gradient vector):

J =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn...

...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 . (8.17)

As a simple example, the Jacobian of y = Ax, where A is a constant matrix, is given by J = A.

142

https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Automatic_differentiation

? Homework 10, Problem 5: Forward Mode or Reverse Mode Differentiation?

Consider the NN mapping

z = W2σ(W1x+ b1) + b2 : Rm → Rn, (8.18)

where there are m inputs, and n outputs. To compute the backpropagation through this
NN, we separate the mapping into a series of steps:

z = z3 (8.19)
z3 = W2z2 + b2 (8.20)
z2 = σ (z1) (8.21)
z1 = W1x+ b1. (8.22)

The sensitivity on z with respect to x is given by

∂z

∂x
=

∂z

∂z3

∂z3
∂z2

∂z2
∂z1

∂z1
∂x

(8.23)

(a) Write ∂z
∂x as a function of the actual gradients (i.e., plug the correct gradients and Ja-

cobians into (8.23)). For the activation function, assume you have access to a diagonal
Jacobian Iσ.

(b) Assume m = 1 and n >> 1 (one input, many outputs). Is it faster to compute (8.23)
with forward mode or reverse mode? Why?

(c) Assume m >> 1 and n = 1 (many inputs, one outputs). Is it faster to compute (8.23)
with forward mode or reverse mode? Why?

Solution.

143

(not posted yet)

That’s all folks.

144

9 Machine Learning Verification

9.1 Interval Bound Propagation

9.2 Neural Network Convex Relaxations

9.3 Branch and Bound

145

10 Appendix

10.1 Optimal PCA Data Imputation

We consider the problem

min
x?

∥∥x− V V Tx
∥∥2
2

(10.1)

where x has two components: known data x∗, and unknown data x?. We expand the objective
function (

x− V V Tx
)T (

x− V V Tx
)
= xTx+ xT

(
V V T

)T
V V Tx− 2xTV V Tx (10.2a)

= xTx+ xTV V TV V Tx− 2xTV V Tx (10.2b)
= xTx+ xTV V Tx− 2xTV V Tx (10.2c)
= xTx− xTV V Tx. (10.2d)

For simplicity, we denote V V T as M , and we decompose this into blocks:[
M1 M2

MT
2 M3

]
= M , V V T . (10.3)

Using this block structure, we further decompose the problem the objective function:

L , xTx− xTV V Tx (10.4a)
= xT

∗ x∗ + xT
? x? − xT

∗ M1x∗ − xT
? M3x? − 2xT

∗ M2x? (10.4b)

Next, we take its gradient, and set it to 0:

0 =
∂L
∂x?

= 2x? − 2M3x? −
(
2xT

∗ M2

)T (10.5a)

= 2 (I −M3)x? − 2MT
2 x∗. (10.5b)

Solving this expression for x?, we have

x? = (I −M3)
−1MT

2 x∗. (10.6)

This imputation of data will project the data vector x on the a given set of principal components.

10.2 Back-Substitution

Consider the linear system
r1,1 r1,2 · · · r1,n
0 r2,2 r2,n
... . . . · · ·
0 0 rn,n




x1
x2
...
xn

 =


b1
b2
...
bn

 . (10.7)

To solve this system, we start with the final value of x:

xn =
bn
rn,n

. (10.8)

146

Next, we solve the second-to-last element:

rn−1,n−1xn−1 + rn−1,nxn = bn−1 (10.9)

xn−1 =
bn−1 − rn−1,nxn

rn−1,n−1
. (10.10)

And so on.

147

References
[1] K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT Press, 2022. [Online].

Available: http://probml.github.io/book1

[2] H. Daumé, A course in machine learning. Hal Daumé III, 2017.

[3] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. ” O’Reilly
Media, Inc.”, 2022.

[4] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for machine learning. Cambridge
University Press, 2020.

[5] A. Bhattacharya, The Man from the Future: The Visionary Ideas of John von Neumann. WW
Norton, 2023. [Online]. Available: https://books.google.com/books?id=VWyPEAAAQBAJ

[6] D. Muller. Math’s fundamental flaw. Youtube. [Online]. Available: https://www.youtube.
com/watch?v=HeQX2HjkcNo

[7] D. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, ser. Harvester studies in
cognitive science. Penguin, 2000. [Online]. Available: https://books.google.com/books?id=
grzEQgAACAAJ

[8] G. Chaitin. Gregory chaitin lecture carnegie-mellon university 2000 pt 1-8.
Youtube. [Online]. Available: https://www.youtube.com/watch?v=HLPO-RTFU2o&list=
PLC7C2C890974C51EC

[9] A. Gefter, “The man who tried to redeem the world with logic,” January 2015. [Online].
Available: https://nautil.us/the-man-who-tried-to-redeem-the-world-with-logic-235253/

[10] A. N. Whitehead and B. Russell, Principia mathematica to* 56. Cambridge University Press,
1927, vol. 2.

[11] K. Gödel, “On formally undecidable propositions of principia mathematica and related systems
i (1931),” in Godel’s Theorem in Focus. Routledge, 2012, pp. 17–47.

[12] A. M. Turing et al., “On computable numbers, with an application to the entscheidungsprob-
lem,” J. of Math, vol. 58, no. 345-363, p. 5, 1936.

[13] J. Fuegi and J. Francis, “Lovelace & babbage and the creation of the 1843 ’notes’,” IEEE
Annals of the History of Computing, vol. 25, no. 4, pp. 16–26, 2003.

[14] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
The bulletin of mathematical biophysics, vol. 5, pp. 115–133, 1943.

[15] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[16] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 2006.

[17] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of neural
nets,” Advances in neural information processing systems, vol. 31, 2018.

[18] Wikipedia, “Silhouette (clustering) — Wikipedia, the free encyclopedia,” http://en.wikipedia.
org/w/index.php?title=Silhouette%20(clustering)&oldid=1268464861, 2025, [Online; accessed
20-January-2025].

148

http://probml.github.io/book1
https://books.google.com/books?id=VWyPEAAAQBAJ
https://www.youtube.com/watch?v=HeQX2HjkcNo
https://www.youtube.com/watch?v=HeQX2HjkcNo
https://books.google.com/books?id=grzEQgAACAAJ
https://books.google.com/books?id=grzEQgAACAAJ
https://www.youtube.com/watch?v=HLPO-RTFU2o&list=PLC7C2C890974C51EC
https://www.youtube.com/watch?v=HLPO-RTFU2o&list=PLC7C2C890974C51EC
https://nautil.us/the-man-who-tried-to-redeem-the-world-with-logic-235253/
http://en.wikipedia.org/w/index.php?title=Silhouette%20(clustering)&oldid=1268464861
http://en.wikipedia.org/w/index.php?title=Silhouette%20(clustering)&oldid=1268464861

[19] S. Chevalier, L. Schenato, and L. Daniel, “Accelerated probabilistic power flow in electrical
distribution networks via model order reduction and neumann series expansion,” IEEE Trans-
actions on Power Systems, vol. 37, no. 3, pp. 2151–2163, 2022.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[21] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in
neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[22] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by
sparse identification of nonlinear dynamical systems,” Proceedings of the national academy of
sciences, vol. 113, no. 15, pp. 3932–3937, 2016.

[23] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Reproducing kernel hilbert space, mer-
cer’s theorem, eigenfunctions, nystr\” om method, and use of kernels in machine learning:
Tutorial and survey,” arXiv preprint arXiv:2106.08443, 2021.

[24] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’16. ACM, Aug. 2016, p. 785–794. [Online]. Available:
http://dx.doi.org/10.1145/2939672.2939785

[25] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning internal representations by
error propagation,” 1985.

149

http://dx.doi.org/10.1145/2939672.2939785

	Introduction and Background
	A Brief History of... AI
	And Now: A Big, Annoying Notation Table
	Linear Algebra Review
	Optimization Review

	Learning Theory Basics
	Data Generating Distributions
	Maximum Likelihood Estimation (MLE)
	Maximum A Posteriori (MAP) Estimation
	Regression vs Classification
	Discriminative vs Generative Classifier Models
	Naive Bayes Classifiers

	Entropy & Cross-Entropy
	Logistic and Softmax Functions
	The Bias-Variance Conundrum
	Overfitting vs Underfitting
	Occam's Razor
	Model Regularization
	Inductive Bias
	No Free Lunch Theorem
	Data-Splitting, Early Stopping, and Cross-Validation

	Unsupervised Learning
	K-Means Clustering
	Selection of K
	Computational Complexity of K-Means
	K-Means++

	Principal Component Analysis
	Singular Value Decomposition
	Low Rank Approximation and the Eckart–Young Theorem
	Principal Component Analysis & the SVD
	PCA Applications: the Netflix Completion Prize, Eigenfaces, Compressed Optimization, and Clustering

	Linear Regression
	A Gentle Introduction
	Least Squares ``and All His Friends"
	Weighted Least Squares
	Linear Systems: Square, Overdetermined, and Underdetermined
	Analytically Solving Least Squares
	QR Decomposition

	Regularized Linear Regression
	Ridge Regression (L2 Norm Regularization)
	Lasso Regression (L1 Norm Regularization)
	Elastic Net Regression (L2 and L1 Norm Regularization)

	Gradient-Based Solutions for Least Squares
	Feature Normalization
	Accelerating Gradient Computations with Batching
	Learning Rate Decay
	Faster Gradient-Based Optimization Routines

	Nonlinear Regression
	Polynomial Regression
	Sparse Identification of Nonlinear Dynamics (SINDy)
	Nonlinear Dynamics and Time Series Data
	SINDy Regression

	=Classification Methods
	K-Nearest Neighbors
	K-Nearest Neighbors Drawbacks

	Logistic Regression
	Binary Classification
	Training Logistic Regression Models
	Probabilistic Decision Boundaries
	Nonlinear Decision Boundaries
	Multiclass Classification

	Support Vector Machines
	Hard Margin Classifier
	Soft Margin Classifier
	The Dual SVM
	The Kernel Trick
	Mapping a Kernelized SVM Back to a Classification Prediction

	Classification Accuracy Metrics

	=Trees and Forests
	Decision Trees (DTs)
	DT Regularization
	DT with Continuous Features
	Regression Trees
	DT Advantages and Disadvantages

	Ensemble Methods
	Bagging
	Random Forests
	Boosting Methods
	AdaBoost
	Gradient Boosting
	XGBoost and LightGBM

	=Neural Networks
	Multilayer Perceptron
	Neural Network Activation Functions
	Backpropagation

	=Machine Learning Verification
	Interval Bound Propagation
	Neural Network Convex Relaxations
	Branch and Bound

	Appendix
	Optimal PCA Data Imputation
	Back-Substitution

